

2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT MERRIMACK STATION COAL ASH LANDFILL

Bow, New Hampshire

Prepared for GSP Merrimack LLC File No. 2025.07 January 2019

Mr. Allan Palmer GSP Merrimack LLC 431 River Road Bow, New Hampshire 03304 January 29, 2019 File No. 2025.07

Re: 2019 Annual Groundwater Monitoring and Corrective Action Report Merrimack Station Coal Ash Landfill Bow, New Hampshire

Dear Allan:

Sanborn, Head & Associates, Inc. (Sanborn Head) prepared this 2019 Annual Groundwater Monitoring and Corrective Action Report (Annual Report) for the Merrimack Station Coal Ash Landfill site (Site) in Bow, New Hampshire, as required under 40 CFR Part 257.90(e) of the Standards for the Disposal of Coal Combustion Residuals (CCR) in Landfills and Surface Impoundments Rule. Groundwater monitoring at the Site was performed pursuant to 40 CFR Part 257.90 and this Annual Report covers the reporting period from October 19, 2015 (40 CFR Part 257 effective date) through December 31, 2017.

REPORT REQUIREMENTS

As required under 40 CFR Part 257.90(e), this Annual Report includes the following information:

- A map, aerial image, or diagram showing the CCR unit and the background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit (see Figures 1 and 2);
- Location of the monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;
- Monitoring data obtained under 40 CFR Parts 257.90 through 257.98, including:
 - □ the number of groundwater samples that were collected for analysis for each background and downgradient well (Table 1);
 - □ the dates the samples were collected (Table 1); and
 - whether the sample was required by the detection monitoring or assessment monitoring programs;
- A narrative discussion of transitions, if any, between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

- Other information required to be included in the annual report as specified in 40 CFR Parts 257.90 through 257.98, which includes;
 - □ Groundwater elevations measured in each well immediately prior to purging and the rate and direction of groundwater flow, as calculated by the owner or operator of the CCR unit, each time groundwater is sampled (40 CFR Part 257.93[c]) (Table 2); and
 - Written demonstrations prepared by a qualified professional engineer demonstrating that a source other than the CCR unit caused the statistically significant increase (SSI) over background levels for a constituent or that the SSI resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (40 CFR Part 257.94[e][2]) (Attachment A).

BACKGROUND

The Site has been operating since 1978 and was constructed in a former sand and gravel quarry on the property adjacent to the Merrimack Station electric power generation facility in Bow, New Hampshire. The landfill was constructed with a Hypalon geomembrane liner system and a leachate collection system, and receives coal ash from the nearby Merrimack Station electric power generation facility. A portion of the landfill was filled to final grade and was capped with a final cover system. A Locus Plan for the Site is provided as Figure 1 and the locations of the monitoring wells in relation to the landfill are indicated on the Facility Plan, Figure 2.

The groundwater quality at the Site has been routinely monitored for the past 30 years under New Hampshire Department of Environmental Services (NHDES) regulations. The current groundwater monitoring program, as prescribed by the NHDES Groundwater Release Detection Permit No. GWP-198400065-B-006, dated March 16, 2017, includes the collection of static groundwater level measurements and laboratory analyses of groundwater samples from five (5) overburden monitoring wells (i.e., SB-1, SB-4, SB-6, SB-13, and SB-14) on a semi-annual basis.

As discussed in the Groundwater Monitoring Well Network Verification (Sanborn Head, January 14, 2016, available in the Site's operating record), the five monitoring wells were certified as an appropriate groundwater monitoring system that was designed and constructed to meet the requirements of 40 CFR Part 257.91. There were no monitoring wells installed or decommissioned during the reporting period.

SUMMARY OF GROUNDWATER MONITORING

As specified in 40 CFR Part 257.94(b), a detection monitoring program was initiated in October 2015, to include obtaining a minimum of eight independent samples for each background and downgradient well for the constituents listed in Appendix III and IV of 40 CFR Part 257 by October 17, 2017. A Sampling and Analysis Plan (Sanborn Head, last revised on October 7, 2016) was prepared to address the sampling and analysis requirements of 40 CFR part 257.93. Monitoring well SB-13 is considered the upgradient/background monitoring well. The other monitoring wells are downgradient or sidegradient to the landfill.

Groundwater samples are collected by Eastern Analytical, Inc. (EAI) of Concord, New Hampshire using low-flow sampling techniques, based on the U.S. Environmental Protection Agency (USEPA) Low Stress (Low Flow) Standard Operating Procedure, revised January 19, 2010. The samples are unfiltered and analyzed by EAI for the parameters identified.

The initial eight independent samples were taken for both background and downgradient wells for the constituents listed in Appendix III (boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids) and IV (antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, fluoride, lead, lithium, mercury, molybdenum, selenium, thallium, and radium 226 and 228 combined). The statistical analysis of the groundwater monitoring data after the eight initial samples indicated that a transition between monitoring programs (i.e., to assessment monitoring) was not required.

The first semi-annual detection monitoring, as specified in 40 CFR Part 257.94, was performed in November 2017 at the five wells for Appendix III constituents only. Semi-Annual detection monitoring continued during the reporting period in April and November 2018. Additional samples were collected on July 25, 2018 as part of a resampling routine for the April 2018 monitoring round. As described below, the data analyses completed during the reporting period indicated that a transition between monitoring programs (i.e., to assessment monitoring) was to not required.

Groundwater analytical data are summarized in Table 1 and analytical laboratory reports are provided in Attachment B. The groundwater level measurements and inferred general groundwater flow directions are summarized on Table 2.

SUMMARY OF STATISTICAL ANALYSIS

As required under 40 CFR Part 257.90(b)(iv), Sanborn Head evaluated groundwater monitoring data for a statistically significant increase (SSI) over background levels for the constituents listed in Appendix III of 40 CFR Part 257 at the five monitoring wells. On May 4, 2018, Sanborn Head issued a Statistical Method Selection Certification, applicable to the statistical analysis completed on the groundwater analytical data collected through July 25, 2018. The certification is available in the Site's operating record. Statistical analysis of the November 2018 data is ongoing and future statistical analyses of additional groundwater monitoring data reviewed by Sanborn Head under 40 CFR Part 257.93 may result in a change to the statistical method used, and future certifications will need to be revised accordingly.

The prediction interval procedure specified in 40 CFR Part 257.93(f)(3) was selected for evaluation of the most recent parameter values for the site wells (i.e., SB-1, SB-4, SB-6, SB-13, and SB-14). The prediction interval procedures were performed on parameters specified in Appendix III (i.e., boron, calcium, chloride, fluoride, pH, Sulfate, and total dissolved solids) using the multiple well and multiple parameter prediction limit equation.

Based on the prediction interval procedures performed for data collected for the November 2017 and April 2018 monitoring rounds, SSIs over background levels were identified. As such, pursuant to 40 CFR Part 257.94(e)(2), within 90 days of detecting the SSI, Sanborn Head prepared Alternative Source Demonstrations (ASDs) that demonstrated, based on a

weight-of-evidence approach, that the SSIs were due to natural variation in groundwater flow. The SSIs and corresponding ASDs are summarized in Exhibit 1, below. The ASDs are provided as Attachment A.

Exhibit 1: Alter nutive source Demonstrations completed in 2018									
Sampling & Resampling Dates	SSI Location and Parameter	ASD Date							
November 17, 2017 &	SB-01: Calcium	May 15, 2018							
January 31, 2018	SB-01. Calciuli	May 13, 2010							
April 9, 2018 &	SB-01: Calcium and sulfate	November 6, 2018							
July 25, 2018	SB-14: Sulfate	November 0, 2010							

Detection monitoring semi-annual groundwater data collected on November 28 and 29, 2018 is included in Table 1; however, the statistical analysis is on-going. As stipulated in 40 CFR Part 257.93(h)(2), the Site operator has 90 days from completing the sampling and analysis to determine whether there has been an SSI over background for any constituent at each monitoring well (i.e., due by March 12, 2019).

CONCLUSION

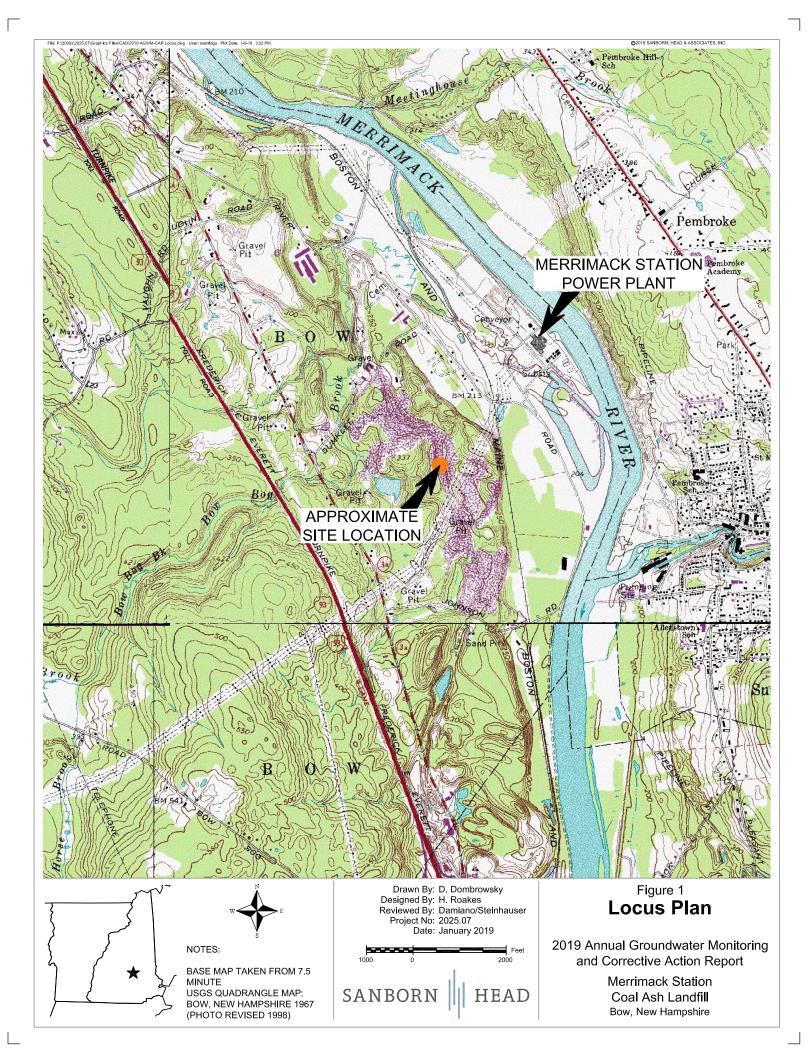
We understand that GSP Merrimack LLC will be responsible for placing this Annual Report in the Site's operating record by January 31, 2019. The next Annual Report will be due January 31, 2020 for the time period from January 1, 2019 through December 31, 2019. Should you require additional information, please contact Harrison Roakes of Sanborn Head at (603) 415-6126.

Sincerely, Sanborn, Head & Associates, Inc.

Harrison R. Roakes, P.E. *Project Manager*

LLD/HRR/ESS: lld

Tes Arribane


Eric S. Steinhauser, P.E., CPESC, CPSWQ *Principal*


Enclosures:	0	Locus Plan
	Figure 2	Facility Plan
	Table 1	Summary of Analytical Results- Groundwater
	Table 2	Summary of Groundwater Level Measurements
	Attachment A	A – Alternative Source Demonstrations
	Attachment E	3 – Analytical Laboratory Reports

P:\2000s\2025.07\Source Files\201901 CCR Annual GW Rpt\201901 Merrimack St Ann CCR GW Rpt.docx

FIGURES

TABLES

TABLE 1 Summary of Analytical Results – Groundwater Merrimack Station Coal Ash Landfill Bow, New Hampshire

									Metals			ew Hampsh					1		M	iscellaneous	Darama	and		
									µg/L									μ	g/L	iscenaneous	s.u		pCi/L	
Location	Date	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Chloride	Fluoride	Sulfate	Total Dissolved Solids	Hd	Radium 226	Radium 228	Radium 226+228
Drin	king Water MCL	6	10	2,000	4	NS	5	NS	100	NS	15	NS	2	NS	50	2	NS	4,000	NS	NS	NS	NS	NS	5
	GW-1 GW-2	6 ‡ NA	10 ‡ NA	2,000 ‡ NA	4 ‡ NA	620 ‡ NA	5 ‡ NA	NS ‡ NS	100 NA	NS ‡ NS	15 ‡ NA	NS NS	2 ‡ NA	NS NS	50 ‡ NA	2 ‡ NA	NS NS	4,000	500,000	NS NS	NS NS	NS NS	NS NS	NS NS
	2/24/2016	<1.0	<1.0	14	<1.0	60	<1.0	7,200	<1.0	<1.0	<1.0	<1,000	<0.10	<1.0	<1.0	<1.0	44,000	<100	8,000	96,000	5.2	0.2 ±0.1	0.6 ±0.6	0.8 ±0.6
	4/25/2016	<1.0	<1.0	18	<1.0	100	<1.0	10,000	<1.0	<1.0	<1.0	<100	< 0.10	1.0	<1.0	<1.0	58,000	<100	9,000	120,000	5.7	0.5 ±0.2	0.2 ±0.4	0.7 ±0.4
	6/6/2016 7/18/2016	<1.0 <1.0	<1.0 <1.0	16 16	<1.0 <1.0	<50 70	<1.0 <1.0	8,200 8,600	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<100 <100	<0.10 <0.10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	55,000 60,000	<100 <100	7,000 9,000	140,000 120,000	5.5 5.4	0.6 ±0.3 0.4 ±0.3	0.2 ±0.5 0.0 ±0.6	0.8 ±0.5 0.4 ±0.6
	8/30/2016	<1.0	<1.0	17	<1.0	<50	<1.0	7,900	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	49,000	<100	7,000	120,000	5.2	0.4 ±0.3	0.3 ±0.4	0.7 ±0.4
SB-1	10/17/2016 11/29/2016	<1.0 <1.0	<1.0	17 16	<1.0 <1.0	<50 <50	<1.0 <1.0	9,700 8,000	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<100 <100	<0.10 <0.10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	60,000 62,000	<100 <100	6,000 6,000	130,000 88,000	5.6 5.6	0.6 ± 0.4 1.0 ± 0.4	0.0 ±0.4 0.8 ±0.5	0.6 ±0.4 1.8 ±0.5
30-1	4/19/2017	<1.0	<1.0	16	<1.0	<50	<1.0	10,000	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	56,000	<100	8,000	120,000	5.8	0.4 ±0.3	0.8 ±0.5	0.6 ±0.5
	11/17/2017					50		12,000									68,000	<100	8,000	120,000	5.7			
	1/31/2018¢ 4/9/2018					67		12,000 12,000									55,000	<100	10,000	160,000	5.9			+
	7/25/2018¢							12,000									63,000		13,000	140,000	5.9			
	11/29/2018 2/23/2016	<1.0	<1.0	14	<1.0	87	<1.0	13,000 8,400	<1.0	<1.0	<1.0	<1.000	< 0.10	<1.0	<1.0	<1.0	66,000 95,000	<100 <100	10,000 9,000	100,000 210,000	6.1 5.5	0.3 ±0.1	1.0 ±0.6	1.3 ±0.6
	4/25/2016	<1.0	<1.0	14	<1.0	<50	<1.0	9,300	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	110,000	<100	8,000	200,000	5.3	0.3 ±0.1	1.0 ± 0.0 0.0 ± 0.4	0.3 ± 0.4
	6/6/2016	<1.0	<1.0	12	<1.0	<50	<1.0	8,000	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	110,000	<100	10,000	230,000	5.6	0.2 ±0.2	0.4 ±0.5	0.6 ±0.5
	7/18/2016 8/30/2016	<1.0 <1.0	<1.0	11 10	<1.0 <1.0	<50 <50	<1.0 <1.0	7,800 6,800	<1.0 <1.0	<1.0 <1.0	<1.0	<100 <100	<0.10 <0.10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	100,000 88,000	<100 <100	11,000 12,000	220,000 210,000	5.3 5.7	0.4 ±0.3 0.2 ±0.2	0.4 ±0.6 0.0 ±0.4	0.8 ±0.6 0.2 ±0.4
SB-4	10/17/2016	<1.0	<1.0	10	<1.0	<50	<1.0	8,400	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	100,000	<100	10,000	190,000	5.7	0.2 ±0.2 0.3 ±0.3	0.0 ±0.1	0.3 ±0.5
30-4	11/29/2016	<1.0	1.0	12	<1.0	<50	<1.0	7,000	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	100,000	<100	10,000	180,000	5.8	0.7 ±0.3	0.5 ±0.5	1.2 ±0.5
	4/19/2017 11/17/2017	<1.0	<1.0	19	<1.0	<50 <50	<1.0	10,000 10,000	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	120,000 77,000	<100 <100	9,000 13,000	260,000 170,000	5.7 5.8	0.3 ±0.3	0.0 ±0.5	0.3 ±0.5
	4/9/2018					<50		11,000									93,000	<100	12,000	220,000	5.9			
	7/25/2018¢ 11/28/2018					<50		9,800 12.000									95,000 86,000	<100	11,000 13,000	210,000 83.000	5.7 6.3			┦
	2/23/2016	<1.0	<1.0	9.0	<1.0	<50	<1.0	5,300	<1.0	<1.0	<1.0	<1,000	< 0.10	<1.0	<1.0	<1.0	80,000	<100	10,000	170,000	5.6	0.1 ±0.07	0.5 ±0.5	0.6 ±0.5
	4/25/2016	<1.0	<1.0	16	<1.0	<50	<1.0	9,300	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	140,000	<100	7,000	220,000	5.6	0.4 ±0.3	0.0 ±0.4	0.4 ±0.4
	6/6/2016 7/18/2016	<1.0 <1.0	<1.0 <1.0	17 17	<1.0 <1.0	<50 <50	<1.0 <1.0	9,300 9,200	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<100 <100	<0.10 <0.10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	140,000 140,000	<100 <100	8,000 9,000	270,000 260,000	5.4 5.3	0.5 ±0.3 0.5 ±0.3	0.0 ±0.5 0.3 ±0.6	0.5 ±0.5 0.8 ±0.6
	8/30/2016	<1.0	<1.0	18	<1.0	<50	<1.0	9,100	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	140,000	<100	9,000	280,000	5.7	0.4 ±0.2	0.0 ± 0.4	0.4 ± 0.4
SB-6	10/17/2016 11/29/2016	<1.0 <1.0	<1.0 <1.0	18 16	<1.0 <1.0	<50 <50	<1.0 <1.0	10,000 8,100	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<100 <100	<0.10 <0.10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	150,000 130,000	<100 <100	8,000 9,000	260,000 230,000	5.8 5.8	0.2 ±0.3 0.5 ±0.2	0.0 ±0.5 0.8 ±0.5	0.2 ±0.5 1.3 ±0.5
	4/19/2017	<1.0	<1.0	13	<1.1	<51	<1.1	7,400	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	100,000	<100	9,000	190,000	5.7	0.4 ±0.3	0.2 ±0.5	0.6 ±0.5
	11/17/2017					<50 <50		9,900									130,000 120,000	<100	11,000	230,000	5.6			
	4/9/2018 7/25/2018¢					<50		7,900 11,000									120,000	<100	9,500 12,000	240,000 310,000	5.6 5.4			
	11/28/2018					<50		11,000									150,000	<100	11,000	140,000	5.9			
	2/23/2016 4/25/2016	<1.0 <1.0	<1.0 <1.0	17 17	<1.0 <1.0	<50 <50	<1.0 <1.0	9,900 8,800	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1,000 <100	<0.10 <0.10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	160,000 160,000	<100 <100	6,000 7,000	270,000 290,000	5.3 5.5	0.6 ±0.1 0.4 ±0.3	0.3 ±0.6 0.1 ±0.4	0.9±0.6 0.5±0.4
	6/6/2016	<1.0	<1.0	20	<1.0	<50	<1.0	9,900	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	170,000	<100	7,000	320,000	5.5	0.4 ±0.3	0.0 ±0.5	0.8 ±0.5
	7/18/2016	<1.0	<1.0	18	<1.0	<50	<1.0	9,700	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	160,000	<100	8,000	330,000	5.3	0.8 ±0.3	0.0 ±0.6	0.8 ±0.6
00.40	8/30/2016 10/17/2016	<1.0 <1.0	1.0 <1.0	20 15	<1.0 <1.0	<50 <50	<1.0 <1.0	8,100 8,800	2.0 2.0	<1.0 <1.0	<1.0 <1.0	<100 <100	<0.10 <0.10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	150,000 150,000	<100 <100	8,000 8,000	270,000 260,000	5.4 5.1	0.8 ±0.3 0.7 ±0.4	0.6 ±0.4 0.6 ±0.5	1.4 ±0.4 1.3 ±0.5
SB-13	11/29/2016	<1.0	<1.0	16	<1.0	<50	<1.0	7,400	1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	140,000	<100	8,000	240,000	5.7	0.6 ±0.3	0.7 ±0.5	1.3 ±0.5
	4/19/2017 11/17/2017	<1.0	<1.0	16	<1.1	<51 <50	<1.1	8,000 7,000	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	130,000 110,000	<100 <100	8,000 9,000	270,000 220,000	5.6 5.8	0.9 ±0.3	0.3 ±0.5	1.2 ±0.5
	4/9/2018					<50		11,000									170,000	<100	8,000	330,000	5.8			
	7/25/2018¢							10,000									190,000	400	8,700	340,000	5.7			
	11/28/2018 2/24/2016	<1.0	<1.0	3.0	<1.0	<50 <50	<1.0	13,000 6,100	<1.0	<1.0	<1.0	<1,000	< 0.10	<1.0	<1.0	<1.0	200,000 16,000	<100 <100	7,200 4,000	260,000 56,000	5.8 5.1	0.2 ±0.08	0.0 ±0.5	0.2 ±0.5
	4/25/2016	<1.0	<1.0	9.0	<1.0	<50	<1.0	11,000	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	58,000	<100	3,000	140,000	5.6	0.8 ±0.5	0.2 ±0.1	1.0 ±0.5
	6/6/2016 7/18/2016	<1.0 <1.0	<1.0 <1.0	6.0 3.0	<1.0	<50 <50	<1.0 <1.0	7,600 6,300	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<100 <100	<0.10 <0.10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	32,000 21,000	<100 <100	4,000 5,000	100,000 68,000	5.4 5.3	0.5 ±0.2 0.2 ±0.2	0.2 ±0.5 0.3 ±0.5	0.7 ±0.5 0.5 ±0.5
	8/30/2016	<1.0	<1.0	2.0	<1.0	<50	<1.0	5,300	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	14,000	<100	4,000	71,000	5.8	0.2 ± 0.2 0.4 ± 0.3	0.3 ± 0.3 0.4 ±0.5	0.5 ±0.5 0.8 ±0.5
SB-14	10/17/2016	<1.0	<1.0	2.0	<1.0	<50	<1.0	4,000	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	11,000	<100	4,000	29,000	5.6	0.2 ±0.3	0.0 ±0.5	0.2 ±0.5
	11/29/2016 4/19/2017	<1.0 <1.0	<1.0 <1.0	2.0 10	<1.0 <1.0	<50 <50	<1.0 <1.0	2,900 10,000	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<100 <100	<0.10 <0.10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	7,000 56,000	<100 <100	4,000 5,000	12,000 120,000	5.2 5.6	0.2 ±0.4 0.7 ±0.3	0.2 ±0.5 0.1 ±0.5	0.4 ±0.5 0.8 ±0.5
	11/17/2017					<50		8,000									18,000	<100	5,000	59,000	5.6			
	4/9/2018 7/25/2018¢					<50		4,200 5,100									14,000 9,800	<100	8,400 6,100	80,000 56,000	5.8 5.6			───┦
	11/28/2018					<50		4,500									7,800	<100	6,300	<5,000	6.0			┨───┤

TABLE 1 Summary of Analytical Results - Groundwater Merrimack Station Coal Ash Landfill Bow, New Hampshire

Notes:

1. Samples were collected by Eastern Analytical, Inc. (EAI) of Concord, New Hampshire on the dates indicated and analyzed by EAI for select metals by USEPA Method 6020. Additional analysis for general select wet chemistry parameters were completed by EAI. Analysis for radium 226 and 228 was completed by KNL Environmental Testing, Inc., of Tampa, Florida. Analysis for lithium was completed by SGS Accutest, of Marlborough, Massachussets (Feb. 2016), and Katahdin Analytical Services, of Scarborough, Maine (April 2016 through October 2016).

2. Concentrations are presented in micrograms per liter (µg/L) which are equivalent to parts per billion (ppb), or they are presented in picoCuries per liter (pCi/L) or pH standard units.

3. "<" indicates the analyte was not detected above the indicated laboratory reporting limit. A blank indicates the sample was not analyzed for this parameter.

4. "GW-1" and "GW-2" Groundwater Standards are from the New Hampshire Department of Environmental Services (NHDES) Contaminated Sites Risk Characterization and Management Policy (RCMP) (January 1998, with 2000 through 2018 revisions/addenda). GW-1 Groundwater Standards are equivalent to the Ambient Groundwater Quality Standards (AGQSs) promulgated in Env-Or 600 (June 2015 with October 2016 amendment). The AGQS/GW-1 Groundwater Standards are intended to be protective of groundwater as a source of drinking water. The GW-2 Groundwater Standards apply to groundwater as a potential source of indoor air contamination.

5. "Drinking Water MCLs" are from the United States Environmental Protection Agency (EPA) website (accessed March 22, 2016). The Maximum Contaminant Level (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards for drinking water systems.

6. "†" indicates the RCMP lists as not currently available.
 "‡" indicates the value provided is the corresponding "dissolved metal" NHDES standard for reference only; NHDES standards for total metals are listed in the RCMP.

"NA" indicates the RCMP lists as not applicable.

"NS" indicates the analyte is not listed in the RCMP or MCL list.

"¢" indicates sample rounds collected as part of the resampling program for identifying statistically significant increases (SSIs).

7. **Bold** values exceed the AGQS/GW-1 Groundwater Standard. *Italic* values exceed the GW-2 Groundwater Standard.

TABLE 2 Summary of Groundwater Level Measurements Merrimack Station Coal Ash Landfill Bow, New Hampshire

		Depths and elevations in feet.															
		SB-1		SB-4				SB-6			SB-13			SB-14			
Date	Reference Elevation	Depth to Water	Water Elevation	Reference Elevation	Depth to Water	Water Elevation	Reference Elevation	Depth to Water		Reference Elevation	Depth to Water	Water Elevation	Reference Elevation	Depth to Water	Water Elevation	General Groundwater Flow Rate (feet/day)	Inferred General Groundwater Flow Direction
Feb-16	240.85	33.82	207.03	274.26	67.36	206.90	268.77	61.84	206.93	219.86	11.83	208.03	242.70	34.88	207.82	0.5 - 2.7	Northeast
Apr-16	240.85	32.19	208.66	274.26	65.63	208.63	268.77	60.07	208.70	219.86	10.16	209.70	242.70	33.13	209.57	0.5 - 2.5	Northeast
Jun-16	240.85	31.84	209.01	274.26	66.24	208.02	268.77	60.80	207.97	219.86	11.11	208.75	242.70	33.93	208.77	0.4 - 1.9	East
Jul-16	240.85	33.88	206.97	274.26	67.30	206.96	268.77	62.07	206.70	219.86	12.41	207.45	242.70	35.10	207.60	0.4 - 1.9	Northeast
Aug-16	240.85	35.09	205.76	274.26	68.54	205.72	268.77	63.19	205.58	219.86	13.76	206.10	242.70	36.39	206.31	0.3 - 1.4	Northeast
0ct-16	240.85	36.20	204.65	274.26	69.68	204.58	268.77	64.42	204.35	219.86	13.92	205.94	242.70	37.58	205.12	0.8 - 3.9	North-Northeast
Nov-16	240.85	36.40	204.45	274.26	69.93	204.33	268.77	64.69	204.08	219.86	15.14	204.72	242.70	37.80	204.90	0.3 - 1.6	East-Northeast
Apr-17	240.85	32.27	208.58	274.26	65.82	208.44	268.77	60.04	208.73	219.86	9.58	210.28	242.70	32.99	209.71	0.8 - 3.8	North-Northeast
Nov-17	240.85	32.87	207.98	274.26	66.39	207.87	268.77	60.97	207.80	219.86	11.33	208.53	242.70	34.08	208.62	0.4 - 1.8	Northeast
Apr-18	240.85	31.13	209.72	274.26	64.58	209.68	268.77	58.93	209.84	219.86	8.74	211.12	242.70	31.94	210.76	0.6 - 3.2	North-Northeast
Jul-18	240.85	32.60	208.25	274.26	66.01	208.25	268.77	60.84	207.93	219.86	11.13	208.73	242.70	33.78	208.92	0.4 - 2.0	Northeast
Nov-18	240.85	29.99	210.86	274.26	63.59	210.67	268.77	57.92	210.85	219.86	7.66	212.20	242.70	30.82	211.88	0.7 - 3.3	Northeast

Notes:

1. Depths to water were obtained from laboratory reports and field sampling sheets prepared by Eastern Analytical, Inc.

2. Inferred general groundwater flow rates and flow directions are approximate and are based on the limited hydrogeologic and groundwater elevation data available. Other interpretations are possible and actual conditions may vary from those indicated. Note that groundwater elevations, directions, and rates may change due to seasonal or other variations in temperature, precipitation, runoff, or other factors.

3. Approximate groundwater flow rates were calculated using an assumed saturated hydraulic conductivity of 100 to 500 feet per day, and an assumed porosity of 39%. Assumptions are generally consistent with values typical of medium-grained, clean sand. The calculated groundwater flow rate is equivalent to the average interstitial velocity or the seepage velocity.

ATTACHMENT A

ALTERNATIVE SOURCE DEMONSTRATIONS

May 2018

Mr. Allan G. Palmer GSP Merrimack LLC 431 River Road Bow, NH 03304 May 15, 2018 File No. 2025.07

Re: Demonstration of Natural Variation in Groundwater Quality Data Collected November 2017 and January 2018 Merrimack Station Coal Ash Landfill Bow, New Hampshire

Dear Allan:

Sanborn, Head & Associates, Inc. (Sanborn Head) prepared this Demonstration of Natural Variation in Groundwater Quality for the Merrimack Station Coal Ash Landfill (landfill) located in Bow, New Hampshire. This Demonstration is provided per the email authorization received February 20, 2018 and is prepared in accordance with the Coal Combustion Residual (CCR) Rules (40 CFR Part 257).

Based on the prediction interval procedure performed by Sanborn Head (see Statistical Method Selection Certification [Statistics Certification], dated May 4, 2018), a statistically significant increase (SSI) of the calcium concentration was identified at downgradient well SB-1 compared to background.¹ As such, pursuant to 40 CFR Part 257.94(e)(2), within 90 days of detecting the SSI, the owner or operator may provide a written demonstration from a qualified professional engineer that: (i) a source other than the CCR unit caused the SSI over background levels for a constituent; or (ii) the SSI resulted from either an error in sampling, analysis, or statistical evaluation; or natural variation in groundwater quality.

Based on our understanding of the site characteristics and the natural variation in groundwater characteristics of the region, the SSI of the calcium concentrations at SB-1 is due to the natural variation in groundwater quality. This finding is supported by the following:

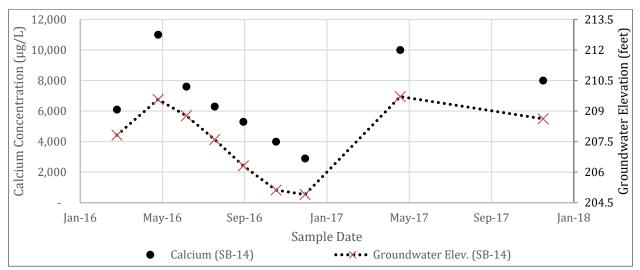
- Detected concentrations of calcium are within the naturally occurring range.
- The site groundwater flow patterns correlate with changes in groundwater quality at the site. Because groundwater flow conditions during the background data set collection were generally different than the flow conditions during the SSI sample collection, the SSI reflects natural variation associated with groundwater flow conditions and it is not indicative of a release from the CCR unit.

Groundwater quality data are provided in Table 1 and monitoring well locations are depicted in Figures 1.A through 1.D.

¹ The background group for calcium at SB-1, in addition to the SB-1 data, included data from monitoring wells SB-4, SB-6, and SB-13. Background data were collected in February 2016 through April 2017. The method for background group selection is discussed in the Statistics Certification dated May 4, 2018.

Calcium occurs naturally in groundwater in the region through dissolution of calciumproducing minerals (e.g., calcite). Although the calcium concentration of 12,000 μ g/L at SB-1 was not within the range of calcium concentrations measured in a limited USGS study of local stratified drift aquifers (ten wells, 4,000-8,600 μ g/L), the calcium concentration of 12,000 μ g/L was less than the reported median concentration of 19,800 μ g/L in a regional USGS study of crystalline rock that was based on samples collected from 117 wells.^{2,3} The calcium concentrations reported in the regional study are applicable to the site because the glacial outwash overburden at the site is eroded from the underlying crystalline rock and has similar mineralogical composition to the aquifers in the USGS study. There is no New Hampshire Ambient Groundwater Quality Standard (AGQS) or United States Environmental Protection Agency (USEPA) maximum contaminant level (MCL) for calcium because it is generally not considered a health risk at concentrations commonly detected in groundwater and drinking water.

Groundwater flow conditions (e.g., groundwater flow direction, flow rate, and elevations) vary at the site. While groundwater at the site typically flows to the northeast with a relatively flat water table (i.e., hydraulic gradients on the order of 0.001 feet per foot [ft/ft]), groundwater hydraulic gradients and flow rates vary and, at times, the overall flow direction at the site can change to either more northerly (i.e., headed north-northeast) or more easterly (headed east). Tabulated flow conditions for each monitoring event are provided as Table 2 and groundwater contour maps for select monitoring events are provided as Figures 1.A through 1.D (groundwater contour maps for June 2016, November 2016, April 2017, and November 2017, respectively). These tabulated values and groundwater contour maps demonstrate the variability in groundwater flow conditions observed at the site.


In addition to changing groundwater flow patterns, groundwater quality parameter concentrations vary at the site. For example, calcium concentrations at monitoring well SB-14 ranged from 2,900 to 11,000 μ g/L during the background monitoring period. Monitoring well SB-14 is upgradient/cross-gradient of the CCR unit and, when flow directions are northeast or north-northeast, SB-14 is approximately upgradient of SB-1. Due to the variability in calcium concentrations at SB-14, if the SB-1 sample (12,000 μ g/L calcium) were compared to the SB-14 background data set, then it would not be considered an SSI.⁴ Additionally, as can be seen below in Exhibit 1, and as confirmed by statistical analysis, calcium concentrations at SB-14 are strongly correlated with groundwater elevations.⁵

² "Geohydrology and Water Quality of Stratified-Draft Aquifers in the Middle Merrimack River Basin, South-Central New Hampshire," prepared by U.S. Geological Survey and dated 1995.

³ "Quality of Water from Crystalline Rock Aquifers in New England, New Jersey, and New York, 1995-2007," prepared by U.S. Department of the Interior and U.S. Geological Survey and dated 2012.

⁴ Based on the prediction limit interval approach discussed in the Statistics Certification dated May 4, 2018.

⁵ Statistically significant positive correlation between groundwater elevation and calcium concentrations at SB-14 based on a Theil-Sen trend analysis test performed using the statistical software ProUCL 5.1.002 and a confidence coefficient of 0.95.

Exhibit 1: Groundwater Elevations and Calcium Concentrations at SB-14

In addition to naturally fluctuating calcium concentrations, another potential source of variation in groundwater quality at the CCR unit is the extensive and ongoing sand and gravel mining occurring upgradient and cross-gradient of monitoring wells SB-1 and SB-14. Mining activities in the area include approximately 30 acres of non-vegetated area and a drainage feature recently installed directly upgradient/cross-gradient of SB-1 (aerial photographs indicate the apparent vegetated swale was installed between April 2016 and September 2017).

The calcium concentrations measured for the SB-1 background data set were relatively consistent compared to the SB-14 background data set. The consequence of the consistency in a background data set, in the context of the prediction limit statistical analysis that was used to evaluate the SSI, was that the relatively small increases in calcium concentration in November 2017 at SB-1 was interpreted as an SSI. It is our opinion that the SSI in calcium concentration at well SB-1 was due to natural variation in groundwater quality due to groundwater flow conditions that were not adequately reflected in the background data set. Specifically, the November 2017 sample was collected at a time when groundwater elevations were high and groundwater flow was to the northeast or north-northeast. The only background samples collected under these groundwater flow conditions were during April 2016 and April 2017, which both correspond with the background samples with the greatest calcium concentrations at SB-1 (both 10,000 μ g/L).

The site conceptual model supports the finding that the increased concentrations of calcium at SB-1 during November 2017 is related to the groundwater flow conditions (i.e., northeast or north-northeast flow and greater groundwater elevations). The November 2017 sample collected at SB-1 reflected the groundwater flow from an upgradient area during a time when calcium concentrations in the upgradient area (e.g., at SB-14) were naturally elevated. This natural variation was not reflected in the background data set because only two of the eight background samples were collected under the groundwater flow conditions similar to those observed during November 2017.

Considering the information currently available, we anticipate that incorporation of additional groundwater quality data into the background data set could mitigate the potential for an SSI associated with natural variation in groundwater flow. Additionally, a more regular sampling schedule (e.g., spring and fall under the semiannual detection monitoring program) may provide more regularity in the groundwater flow conditions during sampling events. We recommend continuing to perform trend analyses during future statistical analyses to detect trends in data and to select appropriate statistical methods.

Based on our understanding of the information presented herein, including the site characteristics, natural variation of regional groundwater quality, and the groundwater flow and groundwater quality monitoring data at SB-1 and other monitoring wells, it is our opinion that the SSI in calcium concentration at well SB-1 is due to natural variation in groundwater flow.

Thank you for the opportunity to be of service to GSP Merrimack LLC. We look forward to continuing to work with you on this project.

Sincerely, Sanborn, Head & Associates, Inc.

Harrison R. Roakes Senior Project Engineer

HRR/AEA/ESS:hrr

tics Aimbau

Eric S. Steinhauser, P.E., CPESC, CPSWQ *Principal*

Enclosures: Table 1 – Summary of Analytical Results - Groundwater Table 2 – Summary of Groundwater Level Measurements Figure 1.A – June 2016 Groundwater Contours Figure 1.B – November 2016 Groundwater Contours Figure 1.C – April 2017 Groundwater Contours Figure 1.D – October 2017 Groundwater Contours

P:\2000s\2025.07\Source Files\201711 Ca Natural Variation\201805 Ca Natural Variation.docx

TABLES

TABLE 1 Summary of Analytical Results – Groundwater Merrimack Station Coal Ash Landfill Bow, New Hampshire

Lackedon Date Term										Metals								1		Mi	scellaneous	Paramet	ers		
Druiking Ware MQ 6 10 2.000 44 485 3 385 100 855 15 85 2 85 50 2 85 4.000 88 88 88 85 GW 2 NA										µg/L									μ	g/L		s.u		pCi/L	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Location	Date	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Chloride	Fluoride	Sulfate	Total Dissolved Solids	Hd	Radium 226	Radium 228	Radium 226+228
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Drin	0	6	10	2,000		NS	5	-	100	NS	15	NS	2	-	50	2	NS	4,000	_	-	NS	NS	NS	5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					/ 1													-	4,000	500,000			NS	NS	NS
4/25/2016 clin clin< clin clin clin<			NA																				NS	NS	NS
6/6/2016 1:0 1:0 8/20 1:0 1		, ,							,				/		_			,		,			0.2 ±0.1	0.6 ±0.6	0.8 ±0.6
Sh1 \$7,18/2016 cl0 cl0 cl0 cl0 cl0 cl0 cl0 cl0 cl0 sl0 sl0 sl0 cl0 cl0 <thcl0< th=""> cl0 cl0 <thcl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td><td>0.000</td><td></td><td></td><td></td><td></td><td></td><td>,</td><td>,</td><td></td><td>0.5 ±0.2</td><td>0.2 ±0.4</td><td>0.7 ±0.4</td></thcl<></thcl0<>									,					0.000						,	,		0.5 ±0.2	0.2 ±0.4	0.7 ±0.4
810 8/30/2016 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10		, ,			-	_	-00		.,					0.000				,		,	,		0.6 ±0.3	0.2 ±0.5	0.8 ±0.5
10/17/2016 cl0		, ,		-	-				- /					0.12.0						.,	.,	-	0.4 ±0.3	0.0 ±0.6	0.4 ±0.6
11/29/2016 <	SB-1	, ,					.00		,						-			,		,	,	-	0.4 ±0.3	0.3 ±0.4	0.7 ±0.4
4/19/2017 c+0 c		., ,				-			,					0				,		.,			0.6 ±0.4	0.0 ±0.4	0.6 ±0.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-		.00	-	-,					0				- ,		-,			1.0 ± 0.4	0.8 ±0.5	1.8 ±0.5
2/23/2016 -1.0 -4.0 -1.0 -4.0 -1.0 -0.0 -1.0 -0.0 -1.0 -0.0 -1.0 -0.0 -1.0 -0.0 -1.0 -0.0 -1.0 -0.0 -1.0 -0.0 -1.0 -0.0 -1.0 -0.0 -1.0 -0.0 -1.0 -0.0		, ,	<1.0	<1.0	16	<1.0	-00	<1.0	,	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0			,			0.4 ±0.3	0.2 ±0.5	0.6 ±0.5
4/25/2016 <t< td=""><td></td><td>, ,</td><td></td><td></td><td></td><td></td><td>50</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td></t<>		, ,					50											,			,				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $, ,				-	<50		,				_/ = 0 = 0					,		,	,		0.3 ±0.1	1.0 ±0.6	1.3 ±0.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$, ,																		-,	,		0.3 ±0.3	0.0 ± 0.4	0.3 ±0.4
884 8/30/2016 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <		, ,					-00		-,					0				,		,	,		0.2 ±0.2	0.4 ±0.5	0.6 ±0.5
10/17/2016 10 112 10 84.00 10 10 10 100				_	-	-			/						-			,		/	.,		0.4 ±0.3	0.4 ±0.6	0.8 ±0.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SB-4	, ,		_	-	1	.00		,									· · · ·			,		0.2 ±0.2	0.0 ± 0.4	0.2 ±0.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		/ /	<1.0			<1.0	<50	<1.0	,	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	,	<100	,	,		0.3 ±0.3	0.0 ±0.5	0.3 ±0.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		/ /	<1.0	1.0	12	<1.0	<50	<1.0	7,000	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0		<100	10,000	,		0.7 ±0.3	0.5 ±0.5	1.2 ± 0.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$, ,	<1.0	<1.0	19	<1.0	<50	<1.0		<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	.,		.,		-	0.3 ±0.3	0.0 ±0.5	0.3 ±0.5
4/25/2016 <10 <10 <10 <10 <10 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td><50</td><td></td><td>10,000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>/</td><td><100</td><td>13,000</td><td>.,</td><td>5.8</td><td></td><td></td><td></td></th<>							<50		10,000									/	<100	13,000	.,	5.8			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$, ,					.00		,				<1,000	.0110				,		,	,		0.1 ± 0.07	0.5 ±0.5	0.6 ±0.5
She file 7/18/2016 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <		4/25/2016	<1.0	<1.0	16	<1.0	<50	<1.0	9,300	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	140,000	<100	7,000	220,000	5.6	0.4 ± 0.3	0.0 ± 0.4	0.4 ± 0.4
SB-6 8/30/2016 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10		6/6/2016	<1.0	<1.0	17	<1.0	<50	<1.0	9,300	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	140,000	<100	8,000	270,000	5.4	0.5 ±0.3	0.0 ± 0.5	0.5 ±0.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		7/18/2016	<1.0	<1.0	17	<1.0	<50	<1.0	9,200	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	140,000	<100	9,000	260,000	5.3	0.5 ±0.3	0.3 ±0.6	0.8 ±0.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SB-6	8/30/2016	<1.0	<1.0	18	<1.0	<50	<1.0	9,100	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	140,000	<100	9,000	280,000	5.7	0.4 ±0.2	0.0 ± 0.4	0.4 ± 0.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		10/17/2016	<1.0	<1.0	18	<1.0	<50	<1.0	10,000	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	150,000	<100	8,000	260,000	5.8	0.2 ± 0.3	0.0 ± 0.5	0.2 ± 0.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			<1.0	<1.0		<1.0	<50	<1.0	8,100	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	130,000	<100	9,000	,		0.5 ±0.2	0.8 ±0.5	1.3 ±0.5
2/23/2016 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0		/ /	<1.0	<1.0	13	<1.1	<51	<1.1	,	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	· · · · ·	<100	.,	,		0.4 ±0.3	0.2 ±0.5	0.6 ±0.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		11/17/2017					<50		9,900									130,000	<100	11,000	230,000	5.6			
6/6/2016 <1.0 <1.0 <2.0 <1.0 <5.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0		2/23/2016	<1.0	<1.0	17	<1.0	<50	<1.0	9,900	<1.0	<1.0	<1.0	<1,000	< 0.10	<1.0	<1.0	<1.0	160,000	<100	6,000	270,000	5.3	0.6 ±0.1	0.3 ±0.6	0.9±0.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.00		· · ·	-				.0120				· · · · ·		í í	,		0.4 ± 0.3	0.1 ± 0.4	0.5 ±0.4
SB-13 8/30/2016 <1.0 1.0 2.0 <1.0 8/10 2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0		6/6/2016	<1.0	<1.0	20	<1.0	<50	<1.0	9,900	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	170,000	<100	7,000	,	5.5	0.8 ±0.3	0.0 ±0.5	0.8 ±0.5
bit bit clo clo <thclo< th=""> <thclo< th=""> <thclo< th=""></thclo<></thclo<></thclo<>	∥ [7/18/2016	<1.0	<1.0	18	<1.0	<50	<1.0	9,700		<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	160,000	<100	8,000	330,000	5.3	0.8 ±0.3	0.0 ±0.6	0.8 ±0.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SB-13	8/30/2016	<1.0	1.0	20	<1.0	<50	<1.0	8,100	2.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	150,000	<100	8,000	270,000	5.4	0.8 ±0.3	0.6 ±0.4	1.4 ±0.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[<1.0	<1.0	15	<1.0	<50	<1.0	8,800	2.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	150,000	<100	8,000	260,000	-	0.7 ±0.4	0.6 ±0.5	1.3 ±0.5
11/17/2017 - - - - 7,000 - - - 110,000 - 0 110,000 - 0 9,000 220,000 5.8 2/24/2016 <1.0		/ /			-		.00			1.0											,		0.6 ±0.3	0.7 ±0.5	1.3 ±0.5
2/24/2016 <1.0 <1.0 3.0 <1.0 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	∥ [<1.0	<1.0	16	<1.1	<51	<1.1	-,	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	,	<100	8,000	270,000	5.6	0.9 ±0.3	0.3 ±0.5	1.2 ±0.5
4/25/2016 <1.0 <1.0 9.0 <1.0 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0		11/17/2017					<50		7,000									110,000	<100	9,000	220,000	5.8			
6/6/2016 <1.0 <1.0 6.0 <1.0 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <		2/24/2016	<1.0	<1.0	3.0	<1.0	<50	<1.0	6,100	<1.0	<1.0	<1.0	<1,000	< 0.10	<1.0	<1.0	<1.0	16,000	<100	4,000	56,000	5.1	0.2 ± 0.08	0.0 ±0.5	0.2 ±0.5
7/18/2016 <1.0 <1.0 3.0 <1.0 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	ľ	4/25/2016	<1.0	<1.0	9.0	<1.0	<50	<1.0	11,000	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	58,000	<100	3,000	140,000	5.6	0.8 ±0.5	0.2 ±0.1	1.0 ±0.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	l İ	6/6/2016	<1.0	<1.0	6.0	<1.0	<50	<1.0	7,600	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	32,000	<100	4,000	100,000	5.4	0.5 ±0.2	0.2 ±0.5	0.7 ±0.5
10/17/2016 <1.0 <1.0 2.0 <1.0 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	ľ	7/18/2016	<1.0	<1.0	3.0	<1.0	<50	<1.0	6,300	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	21,000	<100	5,000	68,000	5.3	0.2 ±0.2	0.3 ±0.5	0.5 ±0.5
11/29/2016 <1.0 <1.0 <1.0 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	SB-14	8/30/2016	<1.0	<1.0	2.0	<1.0	<50	<1.0	5,300	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	14,000	<100	4,000	71,000	5.8	0.4 ±0.3	0.4 ±0.5	0.8 ±0.5
	ľ	10/17/2016	<1.0	<1.0	2.0	<1.0	<50	<1.0	4,000	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	11,000	<100	4,000	29,000	5.6	0.2 ±0.3	0.0 ±0.5	0.2 ±0.5
		11/29/2016	<1.0	<1.0	2.0	<1.0	<50	<1.0	2,900	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	< 1.0	7,000	<100	4,000	12,000	5.2	0.2 ±0.4	0.2 ±0.5	0.4 ±0.5
4/19/2017 <1.0 <1.0 10 <1.0 500 1000 <1.0 10,000 <1.0 10,000 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <		4/19/2017	<1.0	<1.0	10	<1.0	<50	<1.0	10,000	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	56,000	<100	5,000	120,000	5.6	0.7 ±0.3	0.1 ±0.5	0.8 ±0.5
11/17/2017 < <50 8,000 < 18,000 < 100 5,000 59,000 5.6		11/17/2017		1			<50		8,000		1	1					1	18,000	<100	5,000	59,000	5.6			

Notes:

1. Samples were collected by Eastern Analytical, Inc. (EAI) of Concord, New Hampshire on the dates indicated and analyzed by EAI for select metals by USEPA Method 6020. Additional analysis for general select wet chemistry parameters were completed by EAI. Analysis for radium 226 and 228 was completed by KNL Environmental Testing, Inc., of Tampa, Florida. Analysis for lithium was completed by SGS Accutest, of Marlborough, Massachussets (Feb. 2016), and Katahdin Analytical Services, of Scarborough, Maine (April 2016 through October 2016).

2. Concentrations are presented in micrograms per liter (µg/L) which are equivalent to parts per billion (ppb), or they are presented in picoCuries per liter (pCi/L) or pH standard units.

3. "<" indicates the analyte was not detected above the indicated laboratory reporting limit.

A blank indicates the sample was not analyzed for this parameter.

4. "GW-1" and "GW-2" Groundwater Standards are from the New Hampshire Department of Environmental Services (NHDES) Contaminated Sites Risk Characterization and Management Policy (RCMP) (January 1998, with 2000 through 2013 revisions/addenda). GW-1 Groundwater Standards are equivalent to the Ambient Groundwater Quality Standards (AGQSs) promulgated in Env-Or 600 (June 2015 with October 2016 amendment). The AGQS/GW-1 Groundwater Standards are intended to be protective of groundwater as a source of drinking water. The GW-2 Groundwater Standards apply to groundwater as a potential source of indoor air contamination.

5. "Drinking Water MCLs" are from the United States Environmental Protection Agency (EPA) website (accessed March 22, 2016). The Maximum Contaminant Level (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards for drinking water systems.

6. "†" indicates the RCMP lists as not currently available.

"‡" indicates the value provided is the corresponding "dissolved metal" NHDES standard for reference only; NHDES standards for total metals are listed in the RCMP.

"NA" indicates the RCMP lists as not applicable.

"NS" indicates the analyte is not listed in the RCMP or MCL list.

"t" indicates that, as part of the program for identifying statistically significant increases (SSIs), SB-1 was resampled for calcium on 1/31/2018. The 1/31/2018 result was also 12,000 µg/L.

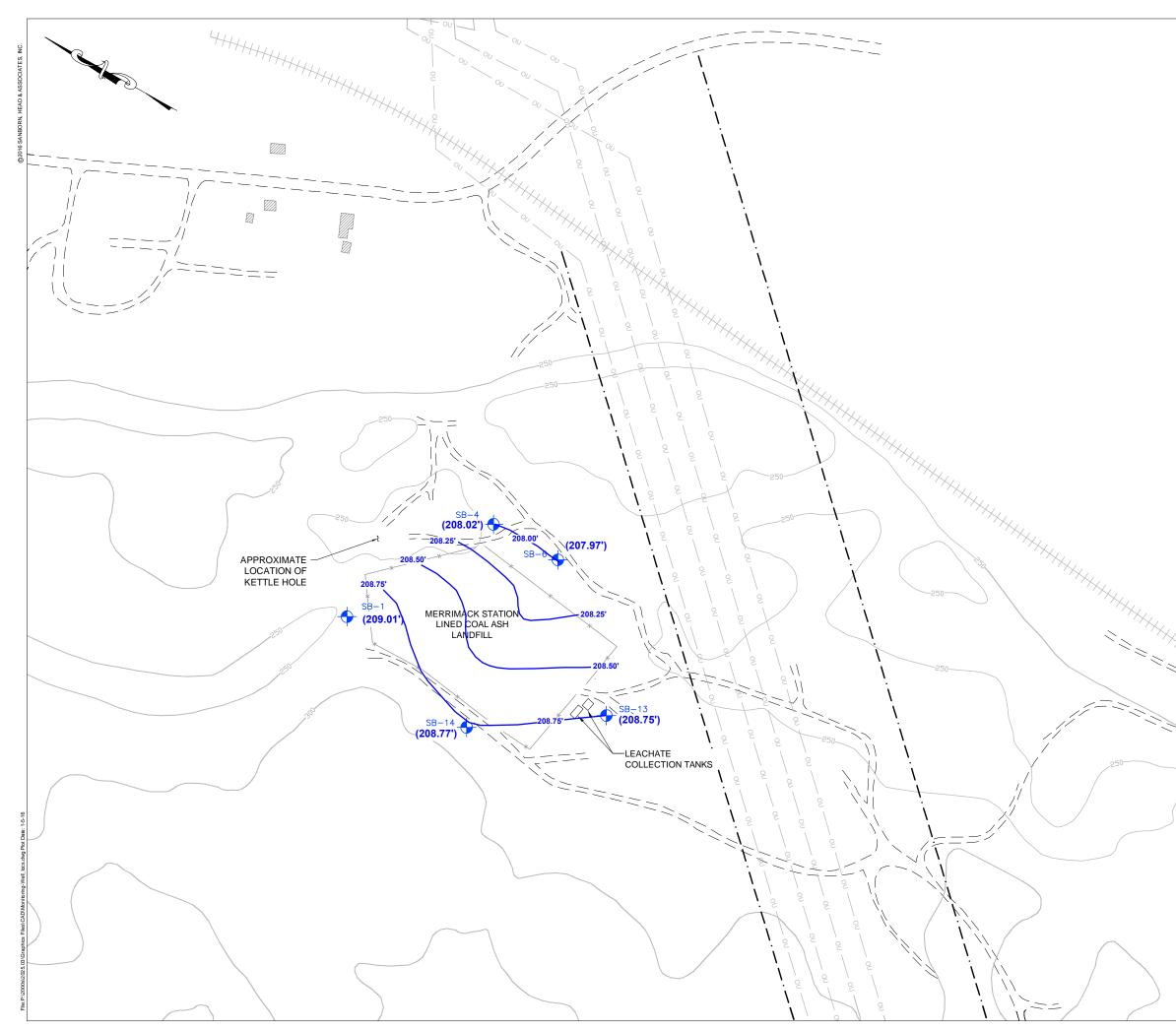
7. Bold values exceed the AGQS/GW-1 Groundwater Standard.

TABLE 2 Summary of Groundwater Level Measurements Merrimack Station Coal Ash Landfill Bow, New Hampshire

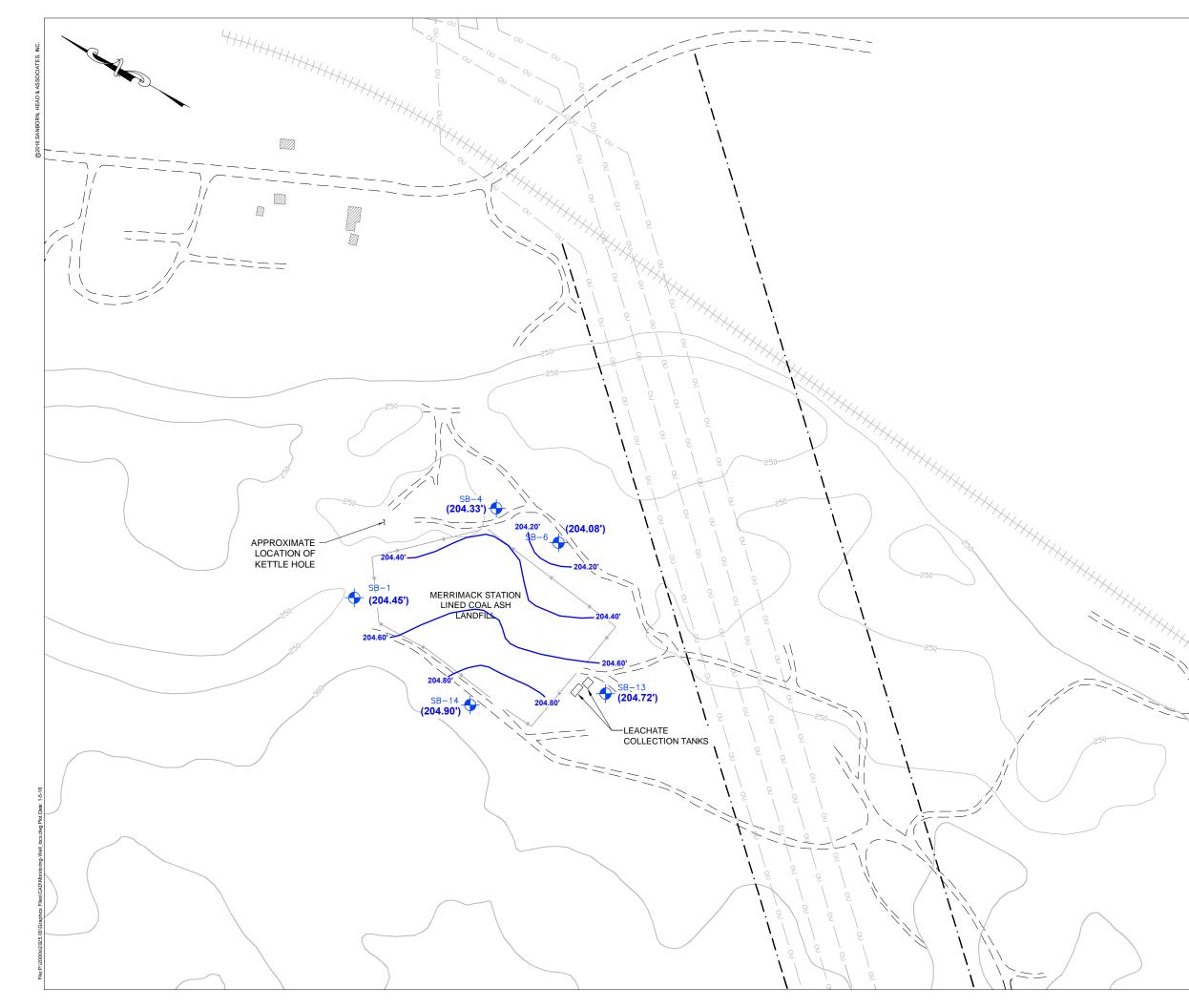
		Depths and elevations in feet.															
		SB-1 SB-4						SB-6		SB-13			SB-14			Inferred	
Date																General	Inferred General
Dutt	Reference	Depth	Water	Reference	Depth	Water	Reference	Depth	Water	Reference	Depth	Water	Reference	Depth	Water	Groundwater	Groundwater Flow
	Elevation	to Water	Elevation	Elevation	to Water	Elevation	Elevation	to Water	Elevation	Elevation	to Water	Elevation	Elevation	to Water	Elevation	Flow Rate	Direction
																(feet/day)	
Feb-16	240.85	33.82	207.03	274.26	67.36	206.90	268.77	61.84	206.93	219.86	11.83	208.03	242.70	34.88	207.82	0.5 - 2.7	Northeast
Apr-16	240.85	32.19	208.66	274.26	65.63	208.63	268.77	60.07	208.70	219.86	10.16	209.70	242.70	33.13	209.57	0.5 - 2.5	Northeast
Jun-16	240.85	31.84	209.01	274.26	66.24	208.02	268.77	60.80	207.97	219.86	11.11	208.75	242.70	33.93	208.77	0.4 - 1.9	East
Jul-16	240.85	33.88	206.97	274.26	67.30	206.96	268.77	62.07	206.70	219.86	12.41	207.45	242.70	35.10	207.60	0.4 - 1.9	Northeast
Aug-16	240.85	35.09	205.76	274.26	68.54	205.72	268.77	63.19	205.58	219.86	13.76	206.10	242.70	36.39	206.31	0.3 - 1.4	Northeast
0ct-16	240.85	36.20	204.65	274.26	69.68	204.58	268.77	64.42	204.35	219.86	13.92	205.94	242.70	37.58	205.12	0.8 - 3.9	North-Northeast
Nov-16	240.85	36.40	204.45	274.26	69.93	204.33	268.77	64.69	204.08	219.86	15.14	204.72	242.70	37.80	204.90	0.3 - 1.6	East-Northeast
Apr-17	240.85	32.27	208.58	274.26	65.82	208.44	268.77	60.04	208.73	219.86	9.58	210.28	242.70	32.99	209.71	0.8 - 3.8	North-Northeast
Nov-17	240.85	32.87	207.98	274.26	66.39	207.87	268.77	60.97	207.80	219.86	11.33	208.53	242.70	34.08	208.62	0.4 - 1.8	Northeast

Notes:

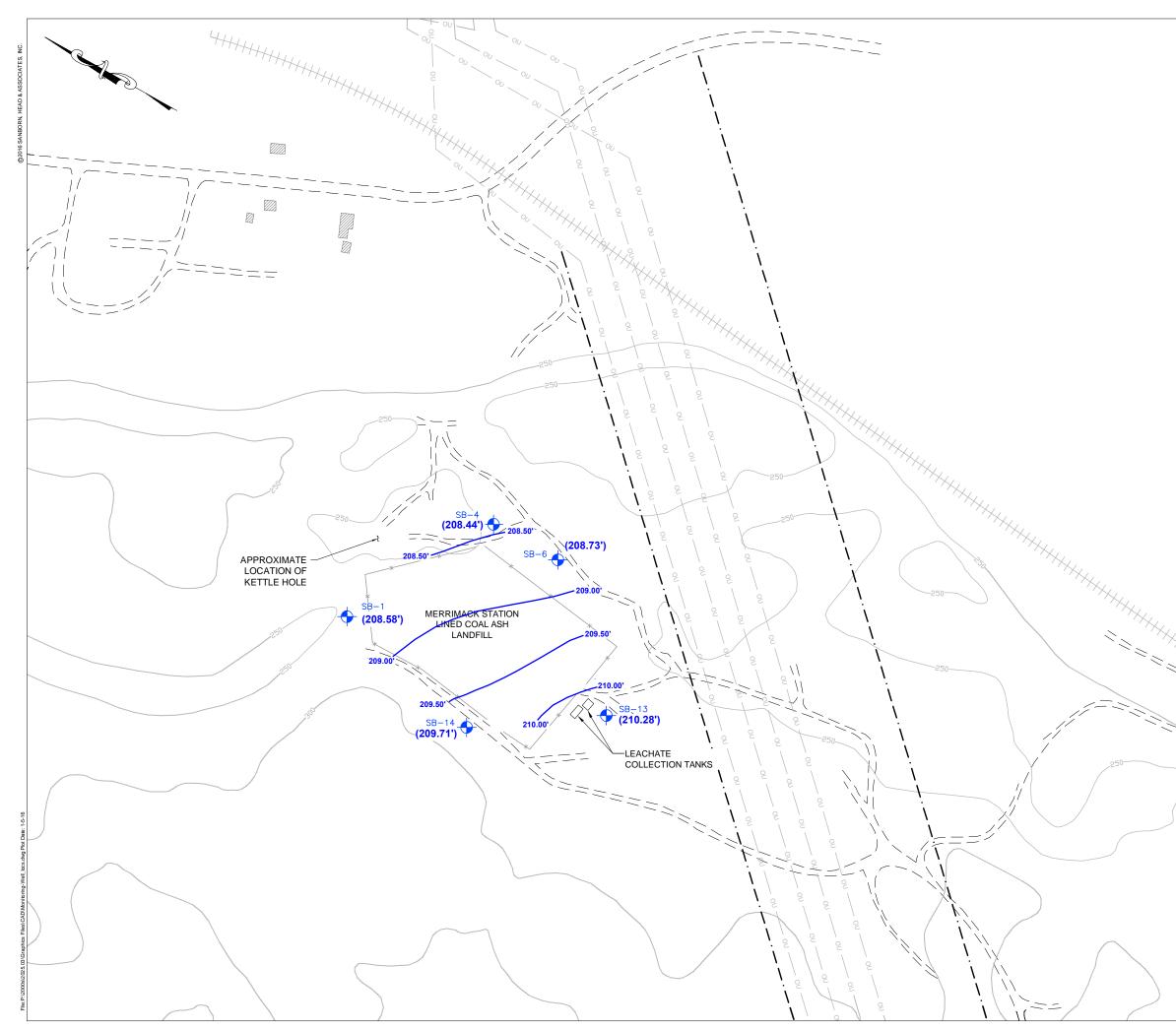
1. Reference elevations were surveyed by PSNH and provided to Sanborn Head.


2. Depths to water were obtained from laboratory reports and field sampling sheets prepared by Eastern Analytical, Inc.

3. Inferred general groundwater flow rates and flow directions are approximate and are based on the limited hydrogeologic and groundwater elevation data available. Other interpretations are possible and actual conditions may vary from those indicated. Note that groundwater elevations, directions, and rates may change due to seasonal or other variations in temperature, precipitation, runoff, or other factors.


4. Approximate groundwater flow rates were calculated using an assumed saturated hydraulic conductivity of 100 to 500 feet per day, and an assumed porosity of 39%. Assumptions are generally consistent with values typical of medium-grained, clean sand. The calculated groundwater flow rate is equivalent to the average interstitial velocity or the seepage velocity.

FIGURES



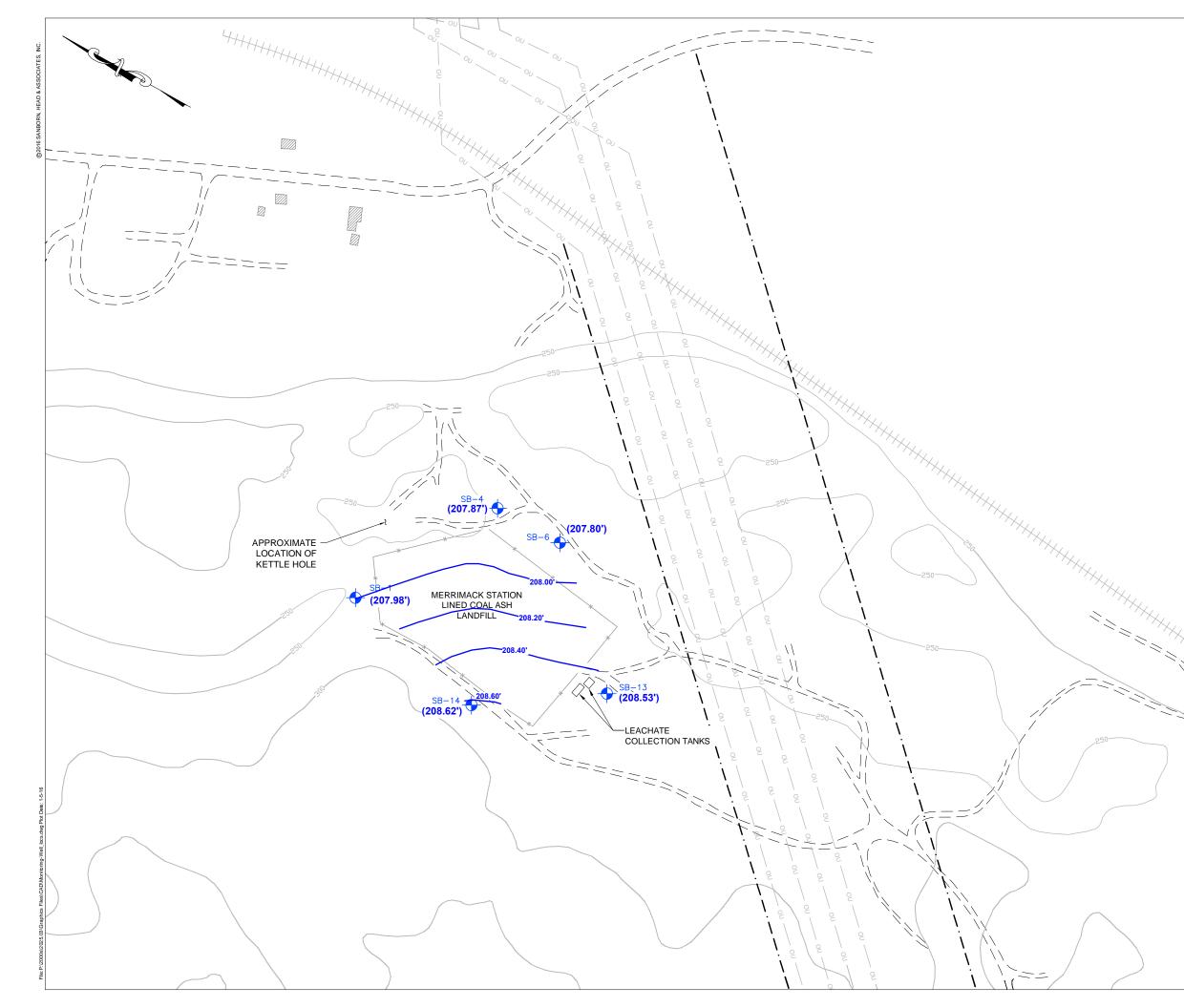

	Figure 1.A
	June 2016
	Groundwater
	Contours
	Merrimack Station Coal Ash Landfill Bow, New Hampshire Drawn By: L. Teal Designed By: H. Roakes Reviewed By: L. Damiano
	Project No: 2025.07 Date: April 2018
	Notes 1. The base map was developed from a drawing prepared by Public Service Company of New Hampshire's Engineering Division entitled, "Area Plan, Merrimack Station, Bow, N.H." The drawing was dated 5/1/90 and was last revised on 6/28/95.
	 The location of site and site features shown should be considered approximate only.
	3. Groundwater contours shown on this plan were developed based on groundwater level measurements in the monitoring wells made on June 6, 2016.
	Legend
	SB-4 - Monitoring Well
, 	(209.01') Groundwater Elevation Measured on June 6, 2016
	Right-Of-Way
	Fence
	— ou — Overhead Utilities
	Groundwater Contour (dashed where less constrained)
	Feet
	150' 75' 0 150' 300'
	SANBORN HEAD
	'I'

Figure 1.B
November 2016
Groundwater
Contours
Merrimack Station Coal Ash Landfill Bow, New Hampshire
Drawn By: L. Teal Designed By: H. Roakes Reviewed By: L. Damiano Project No: 2025.07 Date: April 2018
Notes 1. The base map was developed from a drawing prepared by Public Service Company of New Hampshire's Engineering Division entitled, "Area Plan, Merrimack Station, Bow, N.H." The drawing was dated 5/1/90 and was last revised on 6/28/95.
 The location of site and site features shown should be considered approximate only.
 Groundwater contours shown on this plan were developed based on groundwater level measurements in the monitoring wells made on November 29, 2016.
Legend
SB-4 🔶 Monitoring Well
(204.45') Groundwater Elevation Measured on Nov. 29, 2016
— · — — Right-Of-Way
Fence
—250— Elevation Contour
-204.60' Groundwater Contour (dashed where less constrained)
150' 75' 0 150' 300'
SANBORN

Figure 1.C April 2017	
April 2017	
, (pin 20 ii)	
Groundwater	
Contours	
Merrimack Station Coal Ash Landfill Bow, New Hampshire Drawn By: L. Teal Designed By: H. Roakes Reviewed By: L. Damiano Project No: 2025.07 Date: April 2018 Notes	
 The base map was developed from drawing prepared by Public Se Company of New Hampsh Engineering Division entitled, " Plan, Merrimack Station, Bow, N.H." The drawing was dated 5/1/ and was last revised on 6/28/95. 	rvice ire's Area
 The location of site and site fear shown should be consider approximate only. 	
 Groundwater contours shown on plan were developed based groundwater level measurements i monitoring wells made on April 2017. 	on n the
Legend	
SB-4 - Monitoring Well	
(208.58') Groundwater Elevation	
Measured on April 19, 2017	
Right-Of-Way	
Overhead Utilities	
Elevation Contour	
Groundwater Contour (dash where less constrained)	ed
Feet 150' 75' 0 150' 300'	
SANBORN HEA	AD

Figure 1.D
November
2017
Groundwater
Contours Merrimack Station
Coal Ash Landfill
Bow, New Hampshire Drawn By: L. Teal
Designed By: H. Roakes Reviewed By: L. Damiano Project No: 2025.07 Date: April 2018
Notes 1. The base map was developed from a drawing prepared by Public Service Company of New Hampshire's Engineering Division entitled, "Area Plan, Merrimack Station, Bow, N.H." The drawing was dated 5/1/90 and was last revised on 6/28/95.
 The location of site and site features shown should be considered approximate only.
 Groundwater contours shown on this plan were developed based on groundwater level measurements in the monitoring wells made on November 17, 2017.
Legend
SB-4 🔶 Monitoring Well
(207.98') Groundwater Elevation Measured on Nov. 17, 2017
Right-Of-Way
Fence
—250— Elevation Contour
Feet
SANBORN HEAD

November 2018

November 6, 2018 File No. 2025.07

Mr. Allan G. Palmer GSP Merrimack LLC 431 River Road Bow, NH 03304

Re: Alternative Source Demonstration Data Collected April 2018 and July 2018 Merrimack Station Coal Ash Landfill Bow, New Hampshire

Dear Allan:

Sanborn, Head & Associates, Inc. (Sanborn Head) prepared this Alternative Source Demonstration (ASD) for the Merrimack Station Coal Ash Landfill (the site) located in Bow, New Hampshire. This ASD is provided per the email authorization received from GSP Merrimack LLC on September 18, 2018 and is prepared in accordance with the Coal Combustion Residual (CCR) Rules (40 CFR Part 257).

INTRODUCTION

Based on the prediction interval procedure performed by Sanborn Head, statistically significant increases (SSIs) compared to background were identified at monitoring wells SB-01 (calcium and sulfate) and SB-14 (sulfate).¹ As such, pursuant to 40 CFR Part 257.94(e)(2), within 90 days of detecting the SSI, the owner or operator may provide a written demonstration from a qualified professional engineer that: (i) a source other than the CCR unit caused the SSI over background levels for a constituent; or (ii) the SSI resulted from either an error in sampling, analysis, or statistical evaluation; or natural variation in groundwater quality.

Using a weight-of-evidence approach, we conclude that the SSIs are due to natural variation in groundwater quality based on the following findings:

- Detected concentrations of sulfate and calcium are within the range of naturally occurring concentrations.
- Groundwater flow conditions and groundwater quality vary at the site. Based on variation observed at the site, including at the most upgradient well, the variation in groundwater quality data that resulted in SSIs at SB-01 and SB-14 are generally consistent with the natural variation that is observed at the site.
- Comparison of major ions in groundwater and in landfill leachate do not indicate leachate impacts to groundwater at the site.

¹ The laboratory analytical data resulting in the SSIs were received on August 8, 2018. The statistical analyses are summarized in the Statistical Method Selection Certification, dated May 4, 2018.

Page 2 2025.07

Groundwater quality data are provided in Table 1 and monitoring well locations are depicted in Figures 1.A through 1.F.

NATURALLY OCCURING CONCENTRATIONS

The concentrations of calcium and sulfate associated with the SSIs are within the range of naturally occurring concentrations for comparable groundwaters, as reported in a local, state-wide, and regional studies, summarized in Exhibit 1. ^{2,3,4} The local and state-wide USGS studies are specific to stratified drift aquifers with generally similar geology to the site, and the regional study is applicable to the site because the glacial outwash overburden at the site is eroded from the underlying crystalline rock and has similar mineralogical composition to the aquifers in the regional USGS study.

Study/Location	Calcium (µg/l	L)	Sulfate (µg/L)	
Local Stratified Drift Aquifers	Min.:	3,400	Min.:	1,000
[n=16]	Median:	4,650	Median:	7,500
	Max.:	8,600	Max.:	14,000
New Hampshire Stratified	Min.:	40	Min.:	<100
Drift Aquifers [n=255]	Median:	7,600	Median:	7,800
	Max.:	87,000	Max.:	79,000
Northeast Crystalline Rock	Min.:	2,700	Min.:	310
Aquifers [n=117]	Median:	19,800	Median:	13,420
	Max.:	98,500	Max.:	68,480
SB-01	April 2018:	12,000	April 2018:	10,000
(SSI data in bold)	July 2018:	12,000	July 2018:	13,000
SB-13	April 2018:	11,000	April 2018:	8,000
(site upgradient well – no SSI)	July 2018:	10,000	July 2018:	8,700
SB-14	April 2018:	4,200	April 2018:	8,400
(SSI data in bold)	July 2018:	5,100	July 2018:	6,100

Exhibit 1: Comparison of Site Calcium and Sulfate Concentrations to Literature

Calcium

Calcium occurs naturally in groundwater in the region through dissolution of calciumproducing minerals (e.g., calcite). Although the calcium concentrations at SB-01 were greater than the concentrations in the local study, the SSI concentrations were well within the range of values for New Hampshire wells and were less than the regional median concentration. There is no New Hampshire Ambient Groundwater Quality Standard (AGQS) or United States Environmental Protection Agency (USEPA) maximum contaminant level (MCL) for calcium because it is generally not considered a health risk at concentrations commonly detected in groundwater and drinking water.

² "Geohydrology and Water Quality of Stratified-Drift Aquifers in the Upper Merrimack River Basin, South-Central New Hampshire," prepared by U.S. Geological Survey and dated 1997; and "Geohydrology and Water Quality of Stratified-Drift Aquifers in the Middle Merrimack River Basin, South-Central New Hampshire," prepared by U.S. Geological Survey and dated 1995.

³ "Ground-Water Resources in New Hampshire: Stratified-Drift Aquifers", prepared by U.S. Geological Survey and dated 1995.

⁴ "Quality of Water from Crystalline Rock Aquifers in New England, New Jersey, and New York, 1995-2007," prepared by U.S. Department of the Interior and U.S. Geological Survey and dated 2012.

Sulfate

Sulfate occurs naturally in groundwater in the region through dissolution of sulfateproducing minerals (e.g., sulfide ores). The sulfate data that resulted in SSIs at SB-01 and SB-14 were within the range of sulfate concentrations reported in the local and state studies, and the SSI concentrations were less than the median reported in the regional study. Additionally, the sulfate concentrations detected at the site were much less than the New Hampshire Ambient Groundwater Quality Standard (AGQS) for sulfate of 500,000 μ g/L. The AGQSs are intended to be protective of groundwater as a source of drinking water.

NATURAL VARIATION DUE TO GROUNDWATER FLOW

Groundwater flow conditions (i.e., groundwater flow direction, flow rate, and elevations) vary at the site. While groundwater at the site typically flows to the northeast with a relatively flat water table (i.e., hydraulic gradients on the order of 0.001 feet per foot [ft/ft]), groundwater hydraulic gradients and flow rates vary and, at times, the overall flow direction at the site can change to either more northerly (i.e., headed north-northeast) or more easterly (headed east). Tabulated flow conditions for each monitoring event are provided as Table 2 and groundwater contour maps for select monitoring events are provided as Figures 1.A through 1.F (groundwater contour maps for June 2016, November 2016, April 2017, November 2017, April 2018, and July 2018, respectively). These tabulated values and groundwater contour maps demonstrate the variability in groundwater flow conditions observed at the site.

Trends in groundwater elevations and trends in groundwater quality (i.e., concentrations of calcium and sulfate) are correlated, as discussed below in the context of each individual SSI. Considering that these changes in groundwater quality are generally not related to flow direction or hydrogeologic location of the monitoring location relative to the landfill i.e., both upgradient and downgradient monitoring wells show similar temporal changes over time, these fluctuations are not indicative of impacts from the landfill. Instead, fluctuations are more likely associated with natural sources of groundwater quality variation, like mineralogical composition of the upgradient aquifer material, groundwater age, or precipitation and infiltrate characteristics.

In addition to natural sources of groundwater quality fluctuation that may be associated with changes in groundwater flow conditions, anthropogenic activities in the area are another potential source of variation in the groundwater quality at the site. One potential source is extensive and ongoing sand and gravel mining occurring upgradient and cross-gradient of monitoring wells SB-01 and SB-14. Mining activities in the area include approximately 30 acres of non-vegetated area and a drainage feature recently installed directly upgradient/cross-gradient of SB-01 (aerial photographs indicate the apparent vegetated swale was installed between April 2016 and September 2017).

Calcium (SSI at SB-01)

Natural variability in calcium concentrations is observed at the site, including the two wells generally upgradient of SB-01 (SB-13 and SB-14). A timeseries plot of groundwater

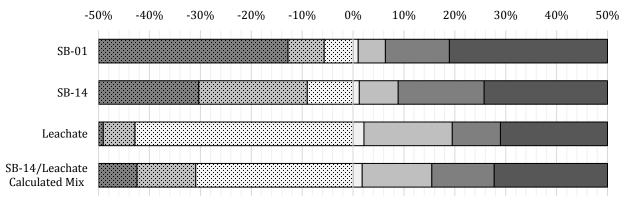
elevations and calcium concentrations at these wells, included as Figure 2A, relates variation in groundwater elevations and calcium concentrations over time. For example, there is a relatively steady, downward trend in both groundwater elevation and calcium concentrations at SB-13 and SB-14 from April 2016 through December 2016. Then, since groundwater elevations increased in April 2017 through July 2018, there is a general increase in calcium concentrations and variability. We did not observe a correlation between groundwater flow direction and groundwater quality for calcium at SB-01, SB-13, or SB-14. These data demonstrate that, considering the variability in calcium concentrations at upgradient wells, the variability in calcium concentrations at SB-01 that resulted in an SSI is generally consistent with natural variation at the site.

Sulfate (SSI at SB-14)

Sulfate concentrations at the most upgradient monitoring well SB-13 have ranged from 6,000 to 9,000 μ g/L during the CCR monitoring period, with a median concentration of 8,000 μ g/L. The sulfate concentrations detected at SB-14 that resulted in the SSI were 8,400 μ g/L and 6,100 μ g/L. For the four most recent monitoring events, sulfate concentrations at SB-13 and SB-14 were equal to or greater than the maximum concentrations detected in the first eight samples collected at the respective locations. Groundwater contour maps for the monitoring rounds corresponding to the SSI data (i.e., Figure 1.E for April 2018 and Figure 1.F for July 2018) indicate SB-14 and SB-13 were generally cross gradient to each other and indicate they were both generally upgradient or cross gradient of the landfill. Based on the hydrologic conditions at the time of sampling and the comparable sulfate concentrations at SB-14 that resulted in an SSI is generally consistent with natural variation at the site.

Sulfate (SSI at SB-01)

Natural variability in sulfate concentrations is observed at the site, including the two wells generally upgradient of SB-01 (SB-13 and SB-14). The timeseries plot of groundwater elevations and sulfate concentrations at these wells, included as Figure 2B, relates variation in groundwater elevations and sulfate concentrations over time. For the four most recent monitoring events, sulfate concentrations at SB-13 and SB-14 were equal to or greater than the maximum concentrations detected in the first eight samples collected at the respective locations. The sulfate data that resulted in an SSI at SB-01 follow the similar, general pattern of increased sulfate in the latest four monitoring rounds coinciding with generally increased groundwater elevations. We did not observe a correlation between groundwater flow direction and groundwater quality for sulfate at SB-01, SB-13, or SB-14. Considering the variability in sulfate concentrations at upgradient wells, particularly during the last four monitoring events, the variability in sulfate concentrations at SB-01 that resulted in an SSI is generally consistent with natural variation at the site.


COMPARISON OF GENERAL WATER CHEMISTRY

Additional analyses were completed on the July 2018 samples to collected information on the major ion chemistry at the five site monitoring wells and from the leachate collection system. The results of these analyses are presented in a Piper Diagram, as Figure 3, and as plotted values, Figure 4. Based on the major ion analyses, the leachate was characterized as

a sodium-magnesium-sulfate water type, while the groundwater samples were generally sodium-chloride water types. Monitoring well SB-14, the monitoring well with the least total dissolved solids, was sodium-potassium dominant but did not have a dominant anion type.

To better characterize the SSIs of sulfate and calcium at SB-01, the major ion chemistry at SB-01 was compared with the major ion chemistry at an upgradient well and of the leachate. Although SB-13 is the monitoring well most upgradient of the landfill, based on groundwater elevation contours for the July 2018 monitoring round, SB-14 was the most upgradient well to SB-01 at the time the major ion chemistry samples were collected. The percent contributions for each major cation and anion for SB-01, SB-14, the leachate, and a hypothetical, calculated mix of SB-14 groundwater and leachate are presented in Exhibit 2, below. The relative percent contributions for the hypothetical mix of SB-14 water and leachate were based on a mix of waters that would result in an TDS equivalent to the TDS measured at SB-01.⁵

Exhibit 2: Percent (%) of Total Ionic Strength for Major Anions (-) and Cations (+) at SB-01, SB-14, in Leachate, and for a Hypothetical Leachate/Groundwater Mix

■ Chloride ■ Alkalinity Total (as CaCO3) ■ Sulfate ■ Potassium ■ Magnesium ■ Calcium ■ Sodium

The total dissolved solids (TDS) was greater at SB-01 than at SB-14 (140,000 μ g /L and 56,000 μ g /L, respectively), which may be a general indication of potential groundwater impacts; however, based on the relative percent contribution of total ionic strength by major ion presented above, the greater TDS at SB-01 is not indicative of impacts from leachate. This conclusion is supported by the follow observations:

- In the leachate, sulfate is the dominant anion and chloride concentrations are relatively low. Magnesium and chloride are the most dominant cations.
- If groundwater from SB-14 and leachate are present in a hypothetical mixture at the ratio described previously (i.e., 98.93:1.07), assuming the waters mix conservatively and no third end-member is present in the mixture, then the relative concentration of sulfate in

⁵ The mixed water calculation was based on a mix of 98.93% SB-14 (TDS = 56,000 μ g/L) and 1.07% leachate (TDS = 7,900,000 μ g/L), resulting in a TDS equivalent to that measured at SB-01 (TDS = 140,000 μ g/L).

the sample would increase and the relative concentration of chloride would decrease. Similarly, we would expect the relative concentration of magnesium to increase.

 Trends in relative concentrations between SB-01 and SB-14 were opposite of those that might indicate leachate impacts to groundwater at SB-01: a) the relative concentration of sulfate decreased compared to SB-14; b) the relative concentration of chloride increased compared to SB-14; and c) the relative concentration of magnesium decreased compared to SB-14.

CLOSING

Detected concentrations of sulfate and calcium are within the naturally occurring range, the SSIs are generally consistent with natural variation in groundwater flow conditions and general groundwater quality at the site, and a comparison of major ions in groundwater and in landfill leachate do not indicate leachate impacts to groundwater.

Based on our understanding of the information presented herein, including the site characteristics, natural variation of regional groundwater quality, and the groundwater flow and groundwater quality monitoring data at SB-01, SB-14, and the other monitoring wells, the SSIs in calcium and sulfate concentrations at well SB-01 and the SSI in sulfate concentrations at well SB-14 are due to natural variation in groundwater flow.

Thank you for the opportunity to be of service to GSP Merrimack LLC. We look forward to continuing to work with you on this project.

Sincerely, Sanborn, Head & Associates, Inc.

Harrison R. Roakes Senior Project Engineer

HRR/AEA/ESS:hrr

Erić Š. Steinhauser, P.E., CPESC, CPSWQ *Principal*

Enclosures: Table 1 – Summary of Analytical Results - Groundwater Table 2 – Summary of Groundwater Level Measurements Figure 1.A – June 2016 Groundwater Contours Figure 1.B – November 2016 Groundwater Contours Figure 1.C – April 2017 Groundwater Contours Figure 1.D – October 2017 Groundwater Contours Figure 1.E – April 2018 Groundwater Contours Figure 1.F – July 2018 Groundwater Contours Figure 2.A – Calcium Timeseries Figure 2.B – Sulfate Timeseries Figure 3 – Piper Diagram Figure 4 – Water Quality Signatures

P:\2000s\2025.07\Source Files\201811 ASD\201811 Alternative Source Demonstration.docx

TABLE 1 Summary of Analytical Results – Groundwater Merrimack Station Coal Ash Landfill Bow, New Hampshire

											Bow, N	lew Hampsł	nire											
			Metals														Miscellaneous Parameters							
			μg/L												μg/L				s.u pCi/L					
Location	Date	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Chloride	Fluoride	Sulfate	Total Dissolved Solids	Hq	Radium 226	Radium 228	Radium 226+228
Drinl	king Water MCL	6	10	2,000	4	NS	5	NS	100	NS	15	NS	2	NS	50	2	NS	4,000	NS	NS	NS	NS	NS	5
	GW-1	6‡	10 ‡	2,000 ‡	4 ‡	620 ‡	5 ‡	NS ‡	100	NS ‡	15‡	NS	2 ‡	NS	50 ‡	2 ‡	NS	4,000	500,000	NS	NS	NS	NS	NS
	GW-2	NA <1.0	NA <1.0	NA 14	NA	NA 60	NA	NS 7,200	NA	NS <1.0	NA <1.0	NS	NA <0.10	NS <1.0	NA	NA	NS 44,000	+	† 8,000	NS 06.000	NS F 2	NS	NS 0.6 ±0.6	NS
-	2/24/2016 4/25/2016	<1.0	<1.0	14	<1.0 <1.0	100	<1.0 <1.0	10,000	<1.0 <1.0	<1.0	<1.0	<1,000 <100	< 0.10	1.0	<1.0 <1.0	<1.0 <1.0	58,000	<100 <100	9,000	96,000 120,000	5.2 5.7	0.2 ±0.1 0.5 ±0.2	0.6 ± 0.8 0.2 ± 0.4	0.8 ± 0.6 0.7 ± 0.4
	6/6/2016	<1.0	<1.0	16	<1.0	<50	<1.0	8,200	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	55,000	<100	7,000	140,000	5.5	0.6 ±0.3	0.2 ±0.5	0.8 ±0.5
-	7/18/2016	<1.0	<1.0	16	<1.0	70	<1.0	8,600	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	60,000	<100	9,000	120,000	5.4	0.4 ±0.3	0.0 ± 0.6	0.4 ± 0.6
-	8/30/2016 10/17/2016	<1.0 <1.0	<1.0 <1.0	17 17	<1.0 <1.0	<50 <50	<1.0 <1.0	7,900 9,700	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<100 <100	<0.10 <0.10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	49,000 60,000	<100 <100	7,000 6,000	120,000 130,000	5.2 5.6	0.4 ±0.3 0.6 ±0.4	0.3 ± 0.4 0.0 ± 0.4	0.7 ± 0.4 0.6 ± 0.4
SB-1	11/29/2016	<1.0	<1.0	16	<1.0	<50	<1.0	8,000	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	62,000	<100	6,000	88,000	5.6	1.0 ±0.4	0.8 ±0.5	1.8 ±0.5
	4/19/2017	<1.0	<1.0	16	<1.0	<50	<1.0	10,000	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	56,000	<100	8,000	120,000	5.8	0.4 ±0.3	0.2 ±0.5	0.6 ±0.5
-	11/17/2017 1/31/2018¢					50		12,000 12,000									68,000	<100	8,000	120,000	5.7			
-	4/9/2018					67		12,000									55,000	<100	10,000	160,000	5.9			
-	7/25/2018¢							12,000									63,000		13,000	140,000	5.9			
-	2/23/2016	<1.0	<1.0	14	<1.0	<50	<1.0	8,400	<1.0	<1.0	<1.0	<1,000	< 0.10	<1.0	<1.0	<1.0	95,000	<100	9,000	210,000	5.5	0.3 ±0.1	1.0 ±0.6	
	4/25/2016 6/6/2016	<1.0 <1.0	<1.0 <1.0	14 12	<1.0 <1.0	<50 <50	<1.0 <1.0	9,300 8,000	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<100 <100	<0.10 <0.10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	110,000 110,000	<100 <100	8,000 10,000	200,000 230,000	5.3 5.6	0.3 ±0.3 0.2 ±0.2	0.0 ± 0.4 0.4 ± 0.5	0.3 ± 0.4 0.6 ± 0.5
-	7/18/2016	<1.0	<1.0	11	<1.0	<50	<1.0	7,800	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	100,000	<100	11,000	220,000	5.3	0.4 ±0.3	0.4 ±0.5	0.8 ±0.6
	8/30/2016	<1.0	<1.0	10	<1.0	<50	<1.0	6,800	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	88,000	<100	12,000	210,000	5.7	0.2 ±0.2	0.0 ± 0.4	0.2 ±0.4
SB-4	10/17/2016	<1.0	<1.0	12	<1.0	<50	<1.0	8,400	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	100,000	<100	10,000	190,000	5.7	0.3 ±0.3	0.0 ±0.5	0.3 ±0.5
-	11/29/2016 4/19/2017	<1.0 <1.0	1.0 <1.0	12 19	<1.0 <1.0	<50 <50	<1.0 <1.0	7,000 10,000	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<100 <100	<0.10 <0.10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	100,000 120,000	<100 <100	10,000 9,000	180,000 260,000	5.8 5.7	0.7 ±0.3 0.3 ±0.3	0.5 ±0.5 0.0 ±0.5	1.2 ± 0.5 0.3 ± 0.5
-	11/17/2017	<1.0	<1.0	19	<1.0	<50	<1.0	10,000	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	77,000	<100	13,000	170,000	5.8	0.3 ±0.5	0.0 ±0.5	0.5 ±0.5
	4/9/2018					<50		11,000									93,000	<100	12,000	220,000	5.9			
	7/25/2018¢							9,800									95,000		11,000	210,000	5.7			<u> </u>
-	2/23/2016 4/25/2016	<1.0 <1.0	<1.0 <1.0	9.0 16	<1.0 <1.0	<50 <50	<1.0 <1.0	5,300 9,300	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1,000 <100	<0.10 <0.10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	80,000 140,000	<100 <100	10,000 7,000	170,000 220,000	5.6 5.6	0.1 ±0.07 0.4 ±0.3	0.5 ± 0.5 0.0 ± 0.4	0.6 ± 0.5 0.4 ± 0.4
	6/6/2016	<1.0	<1.0	17	<1.0	<50	<1.0	9,300	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	140,000	<100	8,000	270,000	5.4	0.5 ±0.3	0.0 ±0.5	0.5 ±0.5
	7/18/2016	<1.0	<1.0	17	<1.0	<50	<1.0	9,200	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	140,000	<100	9,000	260,000	5.3	0.5 ±0.3	0.3 ±0.6	0.8 ±0.6
SB-6	8/30/2016 10/17/2016	<1.0 <1.0	<1.0 <1.0	18 18	<1.0 <1.0	<50 <50	<1.0 <1.0	9,100 10,000	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<100 <100	<0.10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	140,000 150,000	<100 <100	9,000 8,000	280,000 260,000	5.7 5.8	0.4 ±0.2 0.2 ±0.3	0.0 ± 0.4 0.0 ± 0.5	0.4 ± 0.4 0.2 ± 0.5
30-0	11/29/2016	<1.0	<1.0	16	<1.0	<50	<1.0	8,100	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	130,000	<100	9,000	230,000	5.8	0.2 ±0.3	0.0 ± 0.3 0.8 ±0.5	1.3 ±0.5
	4/19/2017	<1.0	<1.0	13	<1.1	<51	<1.1	7,400	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	100,000	<100	9,000	190,000	5.7	0.4 ±0.3	0.2 ±0.5	0.6 ±0.5
-	11/17/2017					<50		9,900 7,900				-					130,000 120,000	<100	11,000 9,500	230,000 240,000	5.6 5.6	-		
-	4/9/2018 7/25/2018¢					<30		11,000									120,000	<100	12,000	310,000	5.4			
	2/23/2016	<1.0	<1.0	17	<1.0	<50	<1.0	9,900	<1.0	<1.0	<1.0	<1,000	< 0.10	<1.0	<1.0	<1.0	160,000	<100	6,000	270,000	5.3	0.6 ±0.1	0.3 ±0.6	0.9±0.6
-	4/25/2016	<1.0	<1.0	17	<1.0	<50	<1.0	8,800	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	160,000	<100	7,000	290,000	5.5	0.4 ±0.3	0.1 ±0.4	0.5 ±0.4
-	6/6/2016	<1.0	<1.0 <1.0	20	<1.0	<50 <50	<1.0	9,900	<1.0	<1.0	<1.0	<100	< 0.10	<1.0 <1.0	<1.0	<1.0	170,000	<100	7,000	320,000	5.5	0.8 ±0.3	0.0 ± 0.5	
	7/18/2016 8/30/2016	<1.0 <1.0	<1.0 1.0	18 20	<1.0 <1.0	<50	<1.0 <1.0	9,700 8,100	<1.0 2.0	<1.0 <1.0	<1.0 <1.0	<100 <100	<0.10 <0.10	<1.0	<1.0 <1.0	<1.0 <1.0	160,000 150,000	<100 <100	8,000 8,000	330,000 270,000	5.3 5.4	0.8 ±0.3 0.8 ±0.3	0.0 ±0.6 0.6 ±0.4	0.8 ± 0.6 1.4 ± 0.4
SB-13	10/17/2016	<1.0	<1.0	15	<1.0	<50	<1.0	8,800	2.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	150,000	<100	8,000	260,000	5.1	0.7 ±0.4	0.6 ±0.5	1.3 ±0.5
	11/29/2016	<1.0	<1.0	16	<1.0	<50	<1.0	7,400	1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	140,000	<100	8,000	240,000	5.7	0.6 ±0.3	0.7 ± 0.5	1.3 ±0.5
	4/19/2017 11/17/2017	<1.0	<1.0	16	<1.1	<51 <50	<1.1	8,000 7,000	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	130,000 110,000	<100 <100	8,000 9,000	270,000 220,000	5.6 5.8	0.9 ±0.3	0.3 ±0.5	1.2 ±0.5
	4/9/2018					<50		11,000									170,000	<100	8,000	330,000	5.8			
	7/25/2018¢							10,000									190,000		8,700	340,000	5.7			
	2/24/2016	<1.0	<1.0 <1.0	3.0 9.0	<1.0	<50 <50	<1.0 <1.0	6,100	<1.0	<1.0 <1.0	<1.0	<1,000	<0.10	<1.0 <1.0	<1.0	<1.0	16,000	<100	4,000	56,000	5.1	0.2 ± 0.08	0.0 ± 0.5	
	4/25/2016 6/6/2016	<1.0 <1.0	<1.0	9.0 6.0	<1.0 <1.0	<50	<1.0	11,000 7,600	<1.0 <1.0	<1.0	<1.0 <1.0	<100 <100	<0.10	<1.0	<1.0 <1.0	<1.0 <1.0	58,000 32,000	<100 <100	3,000 4,000	140,000 100,000	5.6 5.4	0.8 ±0.5 0.5 ±0.2	0.2 ±0.1 0.2 ±0.5	1.0 ±0.5 0.7 ±0.5
	7/18/2016	<1.0	<1.0	3.0	<1.0	<50	<1.0	6,300	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	21,000	<100	5,000	68,000	5.3	0.2 ±0.2	0.3 ±0.5	
	8/30/2016	<1.0	<1.0	2.0	<1.0	<50	<1.0	5,300	<1.0	<1.0	<1.0	<100	< 0.10	<1.0	<1.0	<1.0	14,000	<100	4,000	71,000	5.8	0.4 ±0.3	0.4 ±0.5	0.8 ±0.5
SB-14	10/17/2016 11/29/2016	<1.0 <1.0	<1.0 <1.0	2.0 2.0	<1.0 <1.0	<50 <50	<1.0 <1.0	4,000 2,900	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<100 <100	<0.10 <0.10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	11,000 7,000	<100 <100	4,000	29,000 12,000	5.6 5.2	0.2 ±0.3 0.2 ±0.4	0.0 ±0.5 0.2 ±0.5	0.2 ±0.5 0.4 ±0.5
	4/19/2017	<1.0	<1.0	10	<1.0	<50	<1.0	10,000	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	56,000	<100	5,000	12,000	5.6	0.2 ±0.4 0.7 ±0.3	0.2 ± 0.3 0.1 ±0.5	
	11/17/2017					<50		8,000									18,000	<100	5,000	59,000	5.6	1		<u> </u>
	4/9/2018					<50		4,200									14,000	<100	8,400	80,000	5.8			
	7/25/2018¢							5,100									9,800		6,100	56,000	5.6			<u> </u>

TABLE 1 Summary of Analytical Results – Groundwater Merrimack Station Coal Ash Landfill Bow, New Hampshire

Notes:

1. Samples were collected by Eastern Analytical, Inc. (EAI) of Concord, New Hampshire on the dates indicated and analyzed by EAI for select metals by USEPA Method 6020. Additional analysis for general select wet chemistry parameters were completed by EAI. Analysis for radium 226 and 228 was completed by KNL Environmental Testing, Inc., of Tampa, Florida. Analysis for lithium was completed by SGS Accutest, of Marlborough, Massachussets (Feb. 2016), and Katahdin Analytical Services, of Scarborough, Maine (April 2016 through October 2016).

2. Concentrations are presented in micrograms per liter (µg/L) which are equivalent to parts per billion (ppb), or they are presented in picoCuries per liter (µCi/L) or pH standard units.

3. "<" indicates the analyte was not detected above the indicated laboratory reporting limit. A blank indicates the sample was not analyzed for this parameter.

4. "GW-1" and "GW-2" Groundwater Standards are from the New Hampshire Department of Environmental Services (NHDES) Contaminated Sites Risk Characterization and Management Policy (RCMP) (January 1998, with 2000 through 2018 revisions/addenda). GW-1 Groundwater Standards are equivalent to the Ambient Groundwater Quality Standards (AGQSs) promulgated in Env-Or 600 (June 2015 with October 2016 amendment). The AGQS/GW-1 Groundwater Standards are intended to be protective of groundwater as a source of drinking water. The GW-2 Groundwater Standards apply to groundwater as a potential source of indoor air contamination.

5. "Drinking Water MCLs" are from the United States Environmental Protection Agency (EPA) website (accessed March 22, 2016). The Maximum Contaminant Level (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards for drinking water systems.

6. "†" indicates the RCMP lists as not currently available.

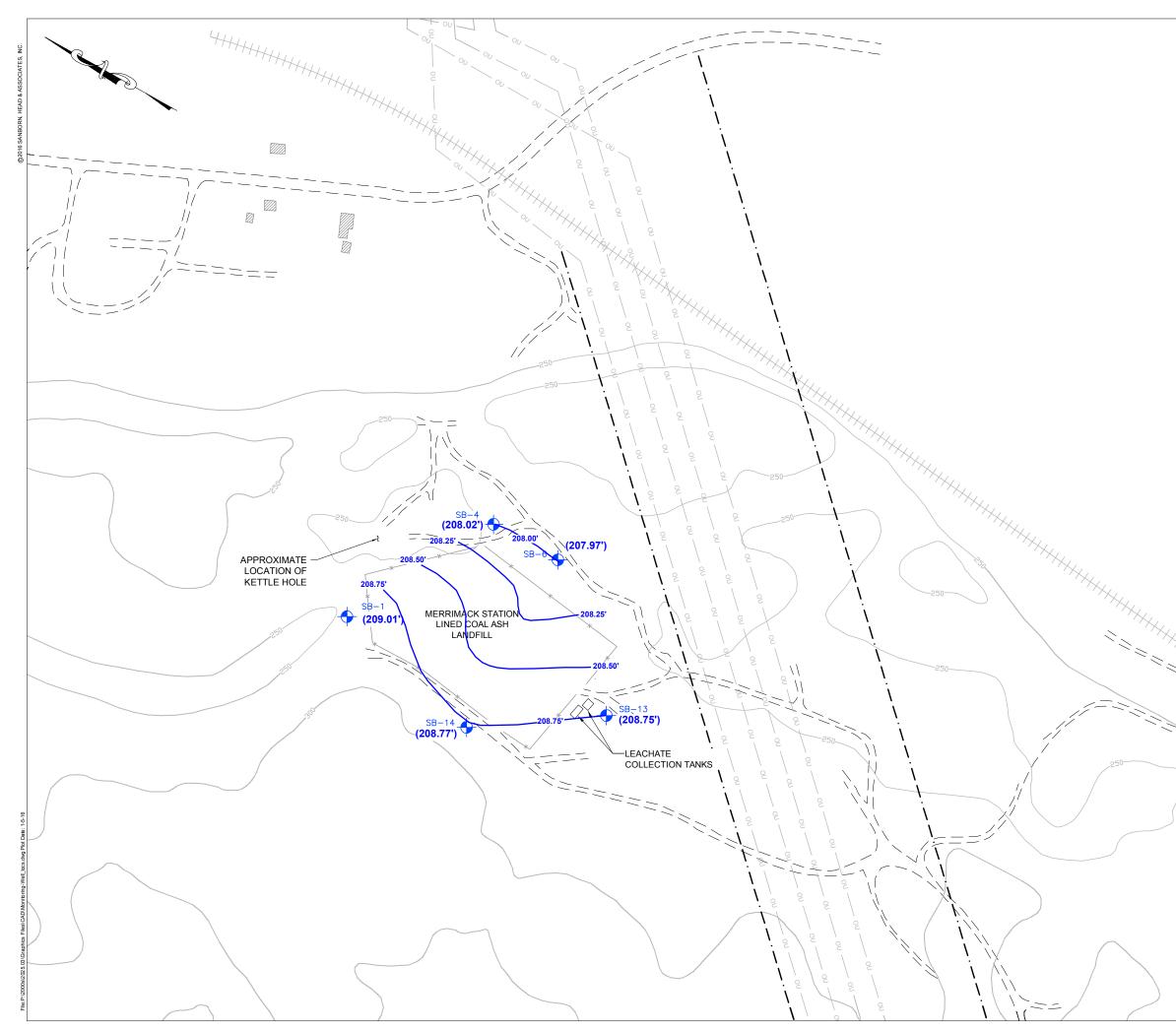
"+" indicates the value provided is the corresponding "dissolved metal" NHDES standard for reference only; NHDES standards for total metals are listed in the RCMP.

"NA" indicates the RCMP lists as not applicable.

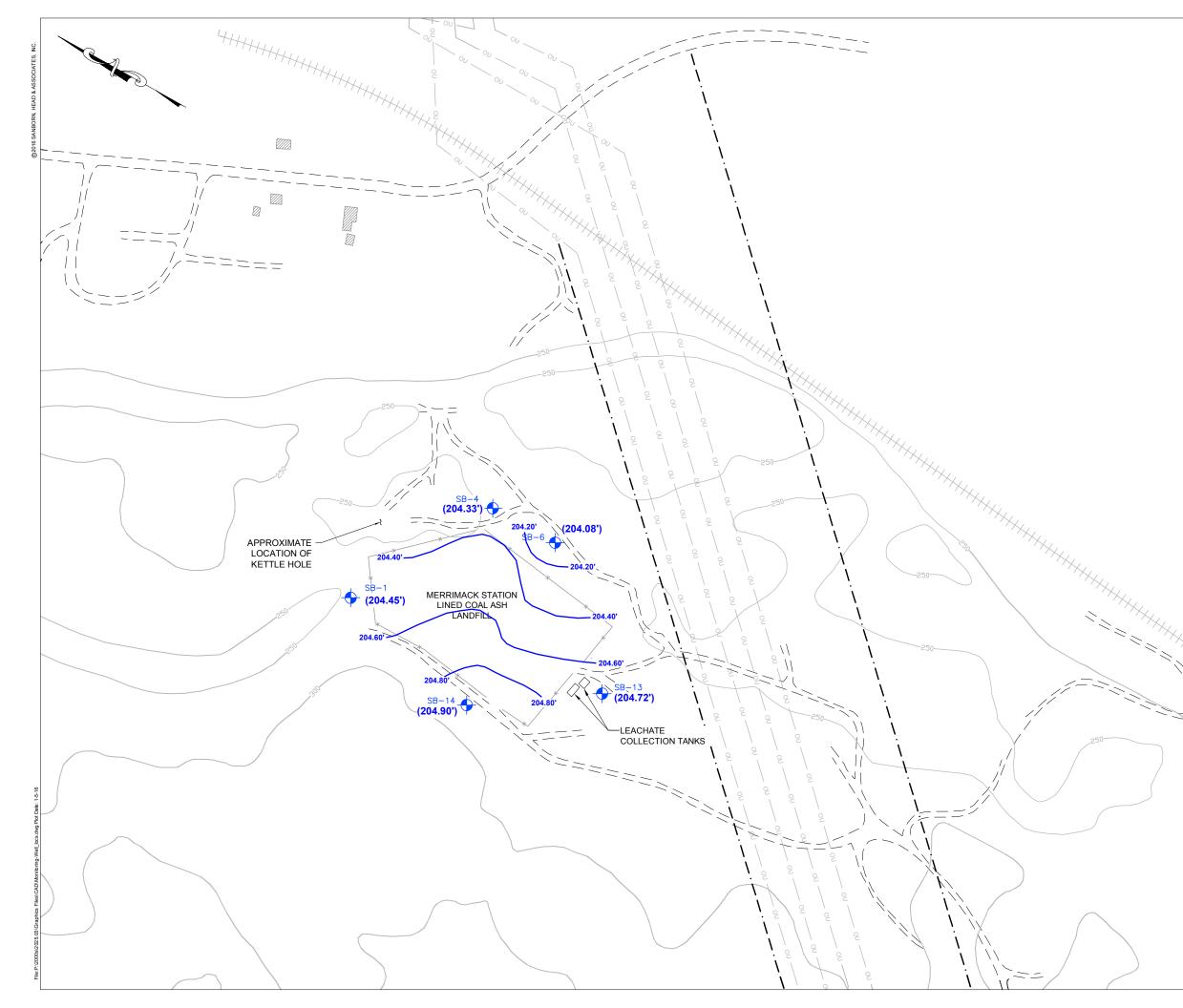
"NS" indicates the analyte is not listed in the RCMP or MCL list. "¢" indicates sample rounds collected as part of the resampling program for identifying statistically significant increases (SSIs).

7. **Bold** values exceed the AGQS/GW-1 Groundwater Standard. *Italic* values exceed the GW-2 Groundwater Standard.

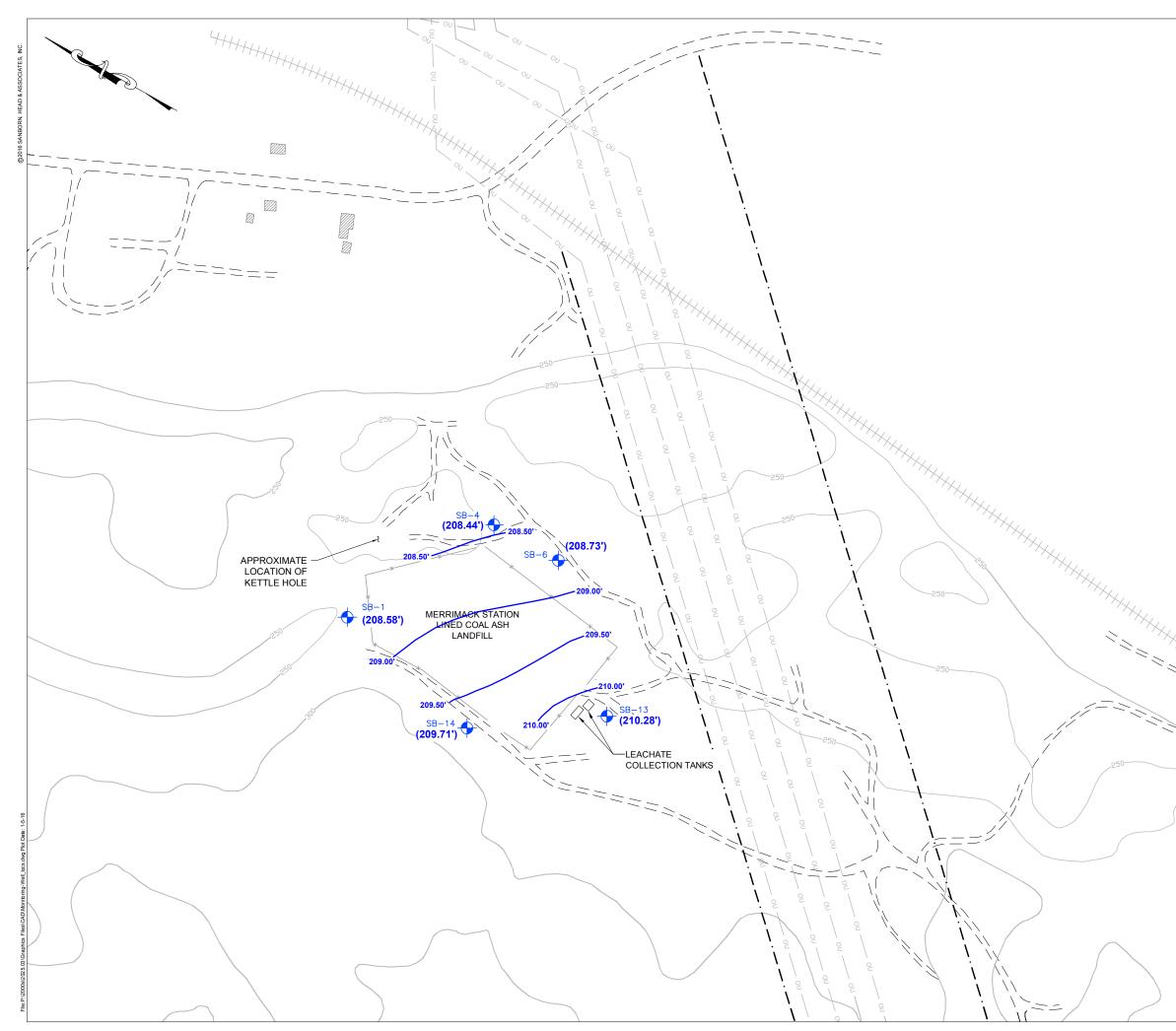
TABLE 2 Summary of Groundwater Level Measurements Merrimack Station Coal Ash Landfill Bow, New Hampshire

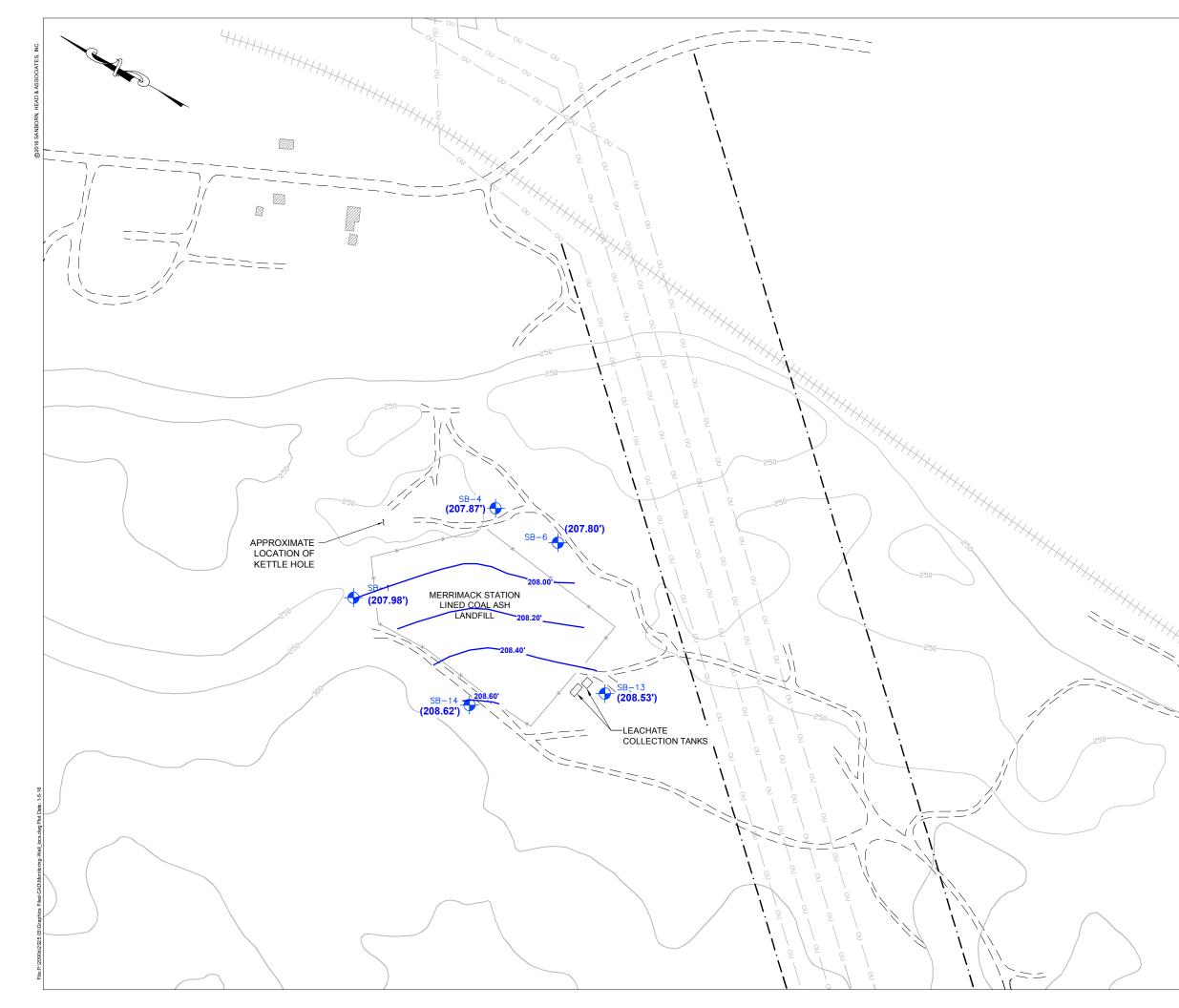

Date		Depths and elevations in feet.															
		SB-1		SB-4			SB-6			SB-13				SB-14		Inferred	
	Reference Elevation	- r -	Water Elevation	Reference Elevation	Depth to Water	Water Elevation	Reference Elevation	Depth to Water		Reference Elevation	Depth to Water	Water Elevation	Reference Elevation	Depth to Water	Water Elevation	General Groundwater Flow Rate (feet/day)	Inferred General Groundwater Flow Direction
Feb-16	240.85	33.82	207.03	274.26	67.36	206.90	268.77	61.84	206.93	219.86	11.83	208.03	242.70	34.88	207.82	0.5 - 2.7	Northeast
Apr-16	240.85	32.19	208.66	274.26	65.63	208.63	268.77	60.07	208.70	219.86	10.16	209.70	242.70	33.13	209.57	0.5 - 2.5	Northeast
Jun-16	240.85	31.84	209.01	274.26	66.24	208.02	268.77	60.80	207.97	219.86	11.11	208.75	242.70	33.93	208.77	0.4 - 1.9	East
Jul-16	240.85	33.88	206.97	274.26	67.30	206.96	268.77	62.07	206.70	219.86	12.41	207.45	242.70	35.10	207.60	0.4 - 1.9	Northeast
Aug-16	240.85	35.09	205.76	274.26	68.54	205.72	268.77	63.19	205.58	219.86	13.76	206.10	242.70	36.39	206.31	0.3 - 1.4	Northeast
0ct-16	240.85	36.20	204.65	274.26	69.68	204.58	268.77	64.42	204.35	219.86	13.92	205.94	242.70	37.58	205.12	0.8 - 3.9	North-Northeast
Nov-16	240.85	36.40	204.45	274.26	69.93	204.33	268.77	64.69	204.08	219.86	15.14	204.72	242.70	37.80	204.90	0.3 - 1.6	East-Northeast
Apr-17	240.85	32.27	208.58	274.26	65.82	208.44	268.77	60.04	208.73	219.86	9.58	210.28	242.70	32.99	209.71	0.8 - 3.8	North-Northeast
Nov-17	240.85	32.87	207.98	274.26	66.39	207.87	268.77	60.97	207.80	219.86	11.33	208.53	242.70	34.08	208.62	0.4 - 1.8	Northeast
Apr-18	240.85	31.13	209.72	274.26	64.58	209.68	268.77	58.93	209.84	219.86	8.74	211.12	242.70	31.94	210.76	0.6 - 3.2	North-Northeast
Jul-18	240.85	32.60	208.25	274.26	66.01	208.25	268.77	60.84	207.93	219.86	11.13	208.73	242.70	33.78	208.92	0.4 - 2.0	Northeast

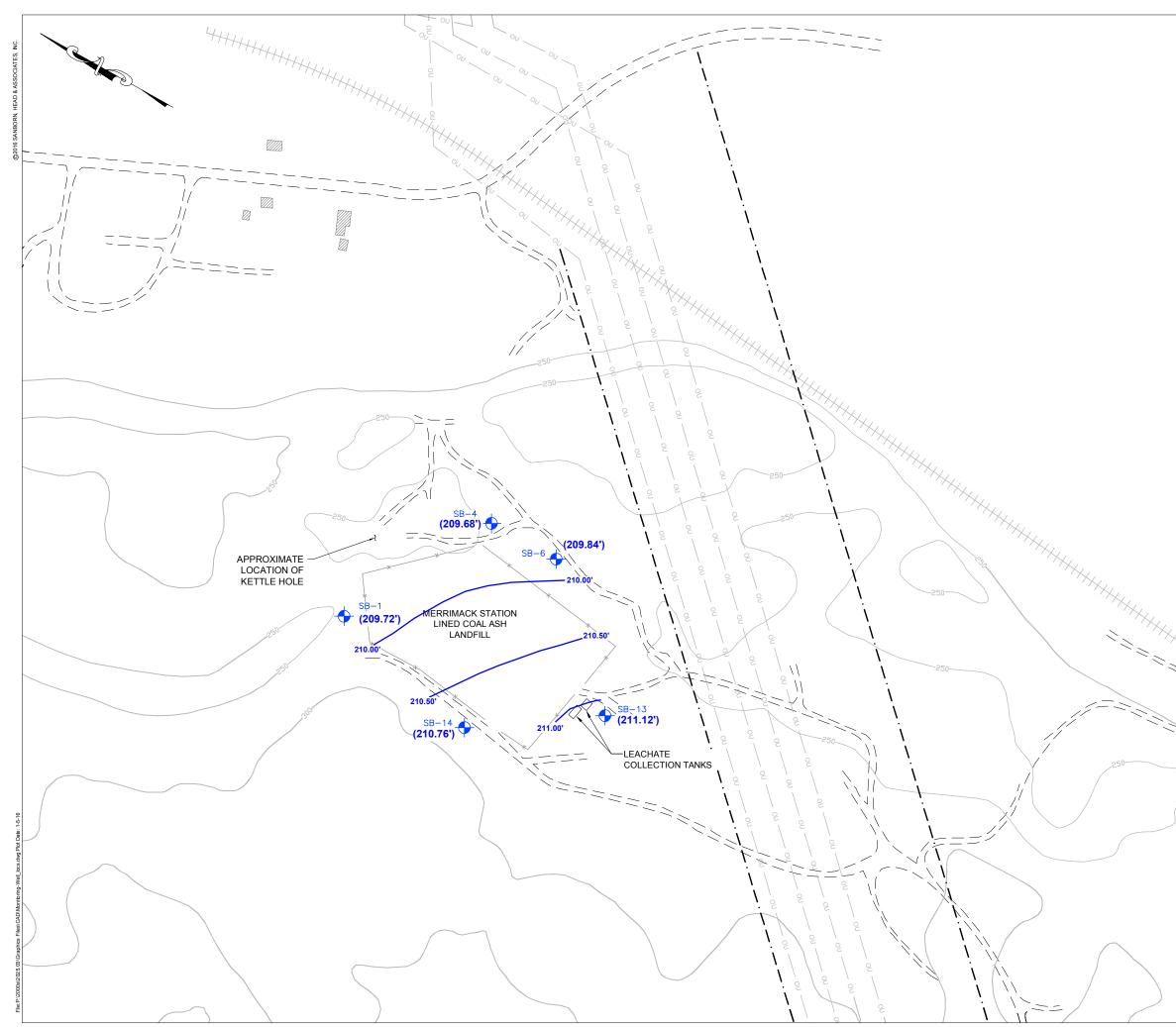
Notes:


1. Depths to water were obtained from laboratory reports and field sampling sheets prepared by Eastern Analytical, Inc.

2. Inferred general groundwater flow rates and flow directions are approximate and are based on the limited hydrogeologic and groundwater elevation data available. Other interpretations are possible and actual conditions may vary from those indicated. Note that groundwater elevations, directions, and rates may change due to seasonal or other variations in temperature, precipitation, runoff, or other factors.


3. Approximate groundwater flow rates were calculated using an assumed saturated hydraulic conductivity of 100 to 500 feet per day, and an assumed porosity of 39%. Assumptions are generally consistent with values typical of medium-grained, clean sand. The calculated groundwater flow rate is equivalent to the average interstitial velocity or the seepage velocity.


Figure 1.A June 2016	
June 2016	
Groundwater	
Contours	
Merrimack Station Coal Ash Landfill Bow, New Hampshire Drawn By: L. Teal Designed By: H. Roakes Reviewed By: L. Damiano Project No: 2025.07 Date: October 2018	
Notes 1. The base map was developed from drawing prepared by Public Serve Company of New Hampshir Engineering Division entitled, "A Plan, Merrimack Station, Bow, N.H." The drawing was dated 5/1/9 and was last revised on 6/28/95.	vice e's area
 The location of site and site feature shown should be consider approximate only. 	
 Groundwater contours shown on plan were developed based groundwater level measurements in monitoring wells made on June 2016. 	on the
Legend	
SB-4 - Monitoring Well	
(209.01') Groundwater Elevation Measured on June 6, 2016	
Right-Of-Way	
Fence	
Overhead Utilities	
Groundwater Contour (dashe	d
-208.50° where less constrained)	3
Feet	
SANBORN HEA	D


	Figure 1.B
	November 2016
	Groundwater
	Contours
	Merrimack Station Coal Ash Landfill Bow, New Hampshire Drawn By: L. Teal Designed By: H. Roakes Reviewed By: L. Damiano Project No: 2025.07 Date: October 2018
	Notes 1. The base map was developed from a drawing prepared by Public Service Company of New Hampshire's Engineering Division entitled, "Area Plan, Merrimack Station, Bow, N.H." The drawing was dated 5/1/90 and was last revised on 6/28/95.
	 The location of site and site features shown should be considered approximate only.
	3. Groundwater contours shown on this plan were developed based on groundwater level measurements in the monitoring wells made on November 29, 2016.
	Legend
	SB-4 🔶 Monitoring Well
/	(204.45') Groundwater Elevation Measured on Nov. 29, 2016
	— · — — Right-Of-Way
	Fence
	— ou — Overhead Utilities
	—250— Elevation Contour
	Groundwater Contour (dashed where less constrained)
	Feet 150' 75' 0 150' 300'
	SANBORN HEAD

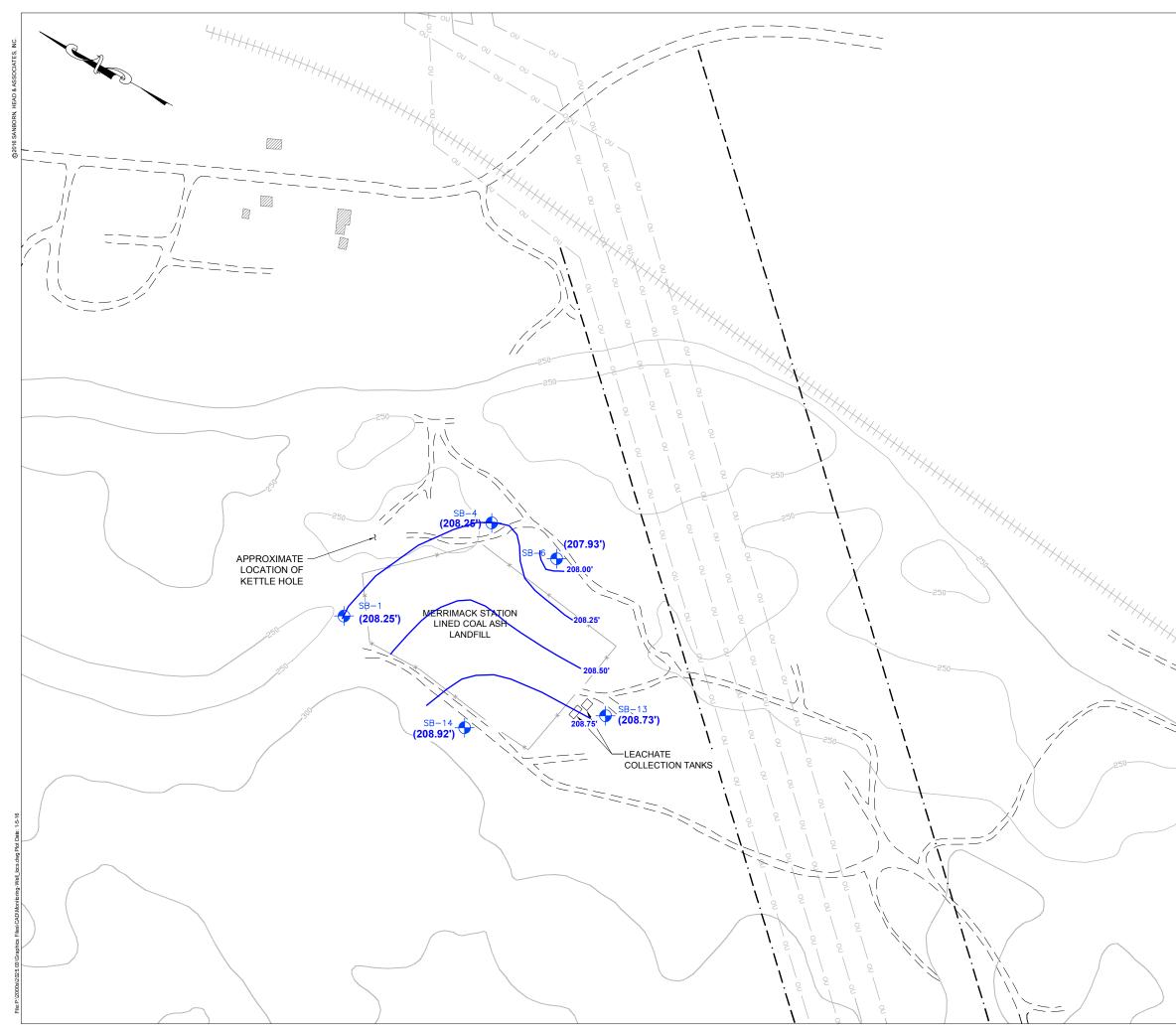

	Figure 1.C
	April 2017
	Groundwater
	Contours
	Merrimack Station Coal Ash Landfill
	Bow, New Hampshire
	Drawn By: L. Teal Designed By: H. Roakes
	Reviewed By: L. Damiano Project No: 2025.07 Date: October 2018
	Notes
	 The base map was developed from a drawing prepared by Public Service Company of New Hampshire's Engineering Division entitled, "Area Plan, Merrimack Station, Bow, N.H." The drawing was dated 5/1/90 and was last revised on 6/28/95.
	2. The location of site and site features shown should be considered approximate only.
	3. Groundwater contours shown on this plan were developed based on groundwater level measurements in the monitoring wells made on April 19, 2017.
	Legend
	SB-4 - Monitoring Well
×.	(208.58') Groundwater Elevation Measured on April 19, 2017
	Right-Of-Way
	Fence
	₀u Overhead Utilities
	Elevation Contour
	Groundwater Contour (dashed
	Feet
	150' 75' 0 150' 300'
	SANBORN HEAD
	<u>'</u>

Figure 1.D
November
2017
Groundwater
Contours Merrimack Station
Coal Ash Landfill
Bow, New Hampshire Drawn By: L. Teal
Designed By: H. Roakes Reviewed By: L. Damiano Project No: 2025.07 Date: October 2018
Notes 1. The base map was developed from a drawing prepared by Public Service Company of New Hampshire's Engineering Division entitled, "Area Plan, Merrimack Station, Bow, N.H." The drawing was dated 5/1/90 and was last revised on 6/28/95.
 The location of site and site features shown should be considered approximate only.
 Groundwater contours shown on this plan were developed based on groundwater level measurements in the monitoring wells made on November 17, 2017.
Legend
SB-4 🔶 Monitoring Well
(207.98') Groundwater Elevation Measured on Nov. 17, 2017
Right-Of-Way
Fence
— ou — Overhead Utilities
—250— Elevation Contour
Groundwater Contour (dashed where less constrained)
Feet 150' 75' 0 150' 300'
SANBORN
-

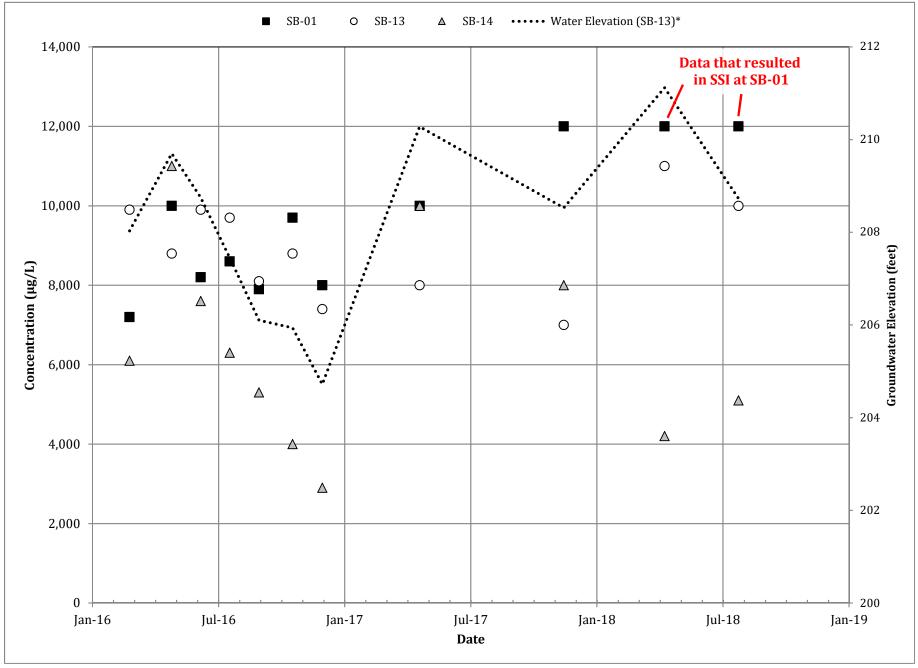


	Figure 1.E
	April 2018
	Groundwater
	Contours
	Merrimack Station Coal Ash Landfill Bow, New Hampshire
	Drawn By: L. Teal Designed By: H. Roakes Reviewed By: L. Damiano Project No: 2025.07 Date: October 2018
	 Notes The base map was developed from a drawing prepared by Public Service Company of New Hampshire's Engineering Division entitled, "Area Plan, Merrimack Station, Bow, N.H." The drawing was dated 5/1/90 and was last revised on 6/28/95.
	2. The location of site and site features shown should be considered approximate only.
	 Groundwater contours shown on this plan were developed based on groundwater level measurements in the monitoring wells made on April 9, 2018.
	Legend
	SB-4
	(207.98') Groundwater Elevation Measured on April 9, 2018
	Right-Of-Way
	Fence
N 'A	Overhead Utilities
	250 Elevation Contour Groundwater Contour (dashed where less constrained)
	Feet
	SANBORN HEAD

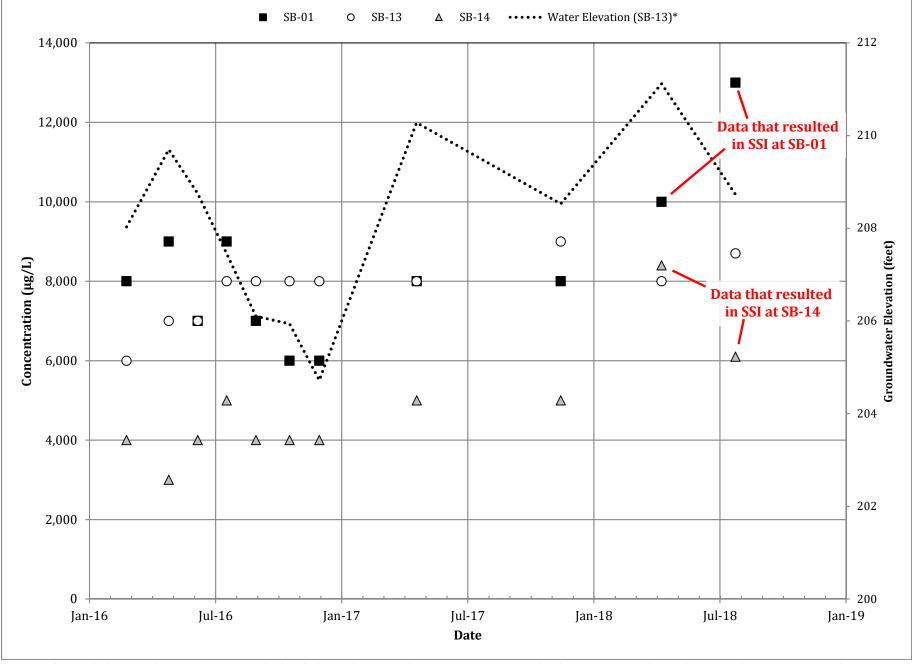

Figure 1.F July 2018 Groundwater Contours Merrimack Station Coal Ash Landfill Bow, New Hampshire Drawn By: L. Teal Designed By: H. Roakes Reviewed By: L. Damiano Project No: 2025.07 Date: October 2018 S he base map was developed from a rawing prepared by Public Service ompany of New Hampshire's ngineering Division entitled, "Area lan, Merrimack Station, Bow, .H." The drawing was dated 5/1/90 nd was last revised on 6/28/95.
Groundwater Contours Merrimack Station Coal Ash Landfill Bow, New Hampshire Drawn By: L. Teal Designed By: H. Roakes Reviewed By: L. Damiano Project No: 2025.07 Date: October 2018 S he base map was developed from a rawing prepared by Public Service ompany of New Hampshire's ngineering Division entitled, "Area lan, Merrimack Station, Bow, .H." The drawing was dated 5/1/90
Contours Merrimack Station Coal Ash Landfill Bow, New Hampshire Drawn By: L. Teal Designed By: H. Roakes Reviewed By: L. Damiano Project No: 2025.07 Date: October 2018 S he base map was developed from a rawing prepared by Public Service ompany of New Hampshire's ngineering Division entitled, "Area lan, Merrimack Station, Bow, .H." The drawing was dated 5/1/90
Merrimack Station Coal Ash Landfill Bow, New Hampshire Drawn By: L. Teal Designed By: H. Roakes Reviewed By: L. Damiano Project No: 2025.07 Date: October 2018 S he base map was developed from a rawing prepared by Public Service ompany of New Hampshire's ngineering Division entitled, "Area lan, Merrimack Station, Bow, .H." The drawing was dated 5/1/90
Coal Ash Landfill Bow, New Hampshire Drawn By: L. Teal Designed By: H. Roakes Reviewed By: L. Damiano Project No: 2025.07 Date: October 2018 S he base map was developed from a rawing prepared by Public Service ompany of New Hampshire's ngineering Division entitled, "Area lan, Merrimack Station, Bow, .H." The drawing was dated 5/1/90
Drawn By: L. Teal Designed By: H. Roakes Reviewed By: L. Damiano Project No: 2025.07 Date: October 2018 S he base map was developed from a rawing prepared by Public Service ompany of New Hampshire's ngineering Division entitled, "Area lan, Merrimack Station, Bow, .H." The drawing was dated 5/1/90
S he base map was developed from a rawing prepared by Public Service ompany of New Hampshire's ngineering Division entitled, "Area lan, Merrimack Station, Bow, .H." The drawing was dated 5/1/90
he location of site and site features nown should be considered pproximate only.
aroundwater contours shown on this an were developed based on roundwater level measurements in the ionitoring wells made on July 25, 018.
end
Monitoring Well
 Groundwater Elevation Measured on July 25, 2018
Right-Of-Way
Fence
 Overhead Utilities
Elevation Contour
Groundwater Contour (dashed where less constrained)
Feet
NBORN 📙 HEAD

Figure 2A - Calcium Timeseries Select Monitoring Wells

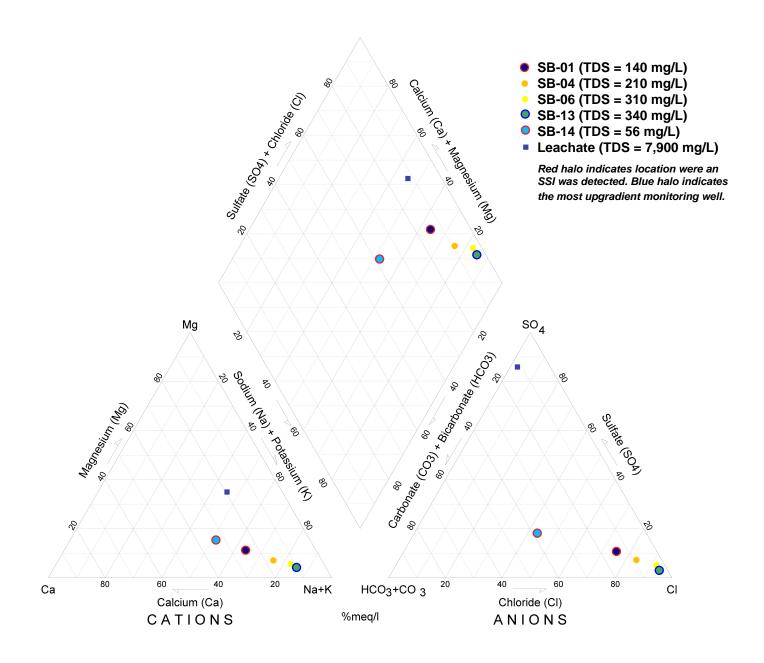
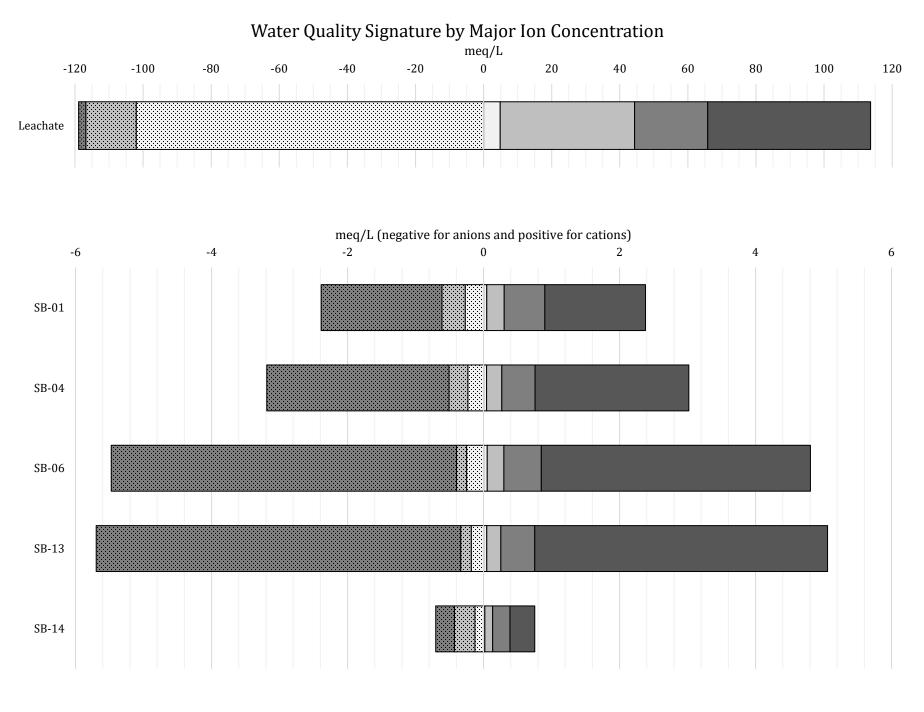

* For simplicity, only the water elevations for SB-13 are displayed. The trends in water elevations at SB-13 are considered representative of the trends in water elevations at SB-01 and SB-14.

Figure 2B - Sulfate Timeseries Select Monitoring Wells



* For simplicity, only the water elevations for SB-13 are displayed. The trends in water elevations at SB-13 are considered representative of the trends in water elevations at SB-01 and SB-14.

Figure 3 - Piper Diagram Merrimack Station Coal Ash Landfill Bow, New Hampshire

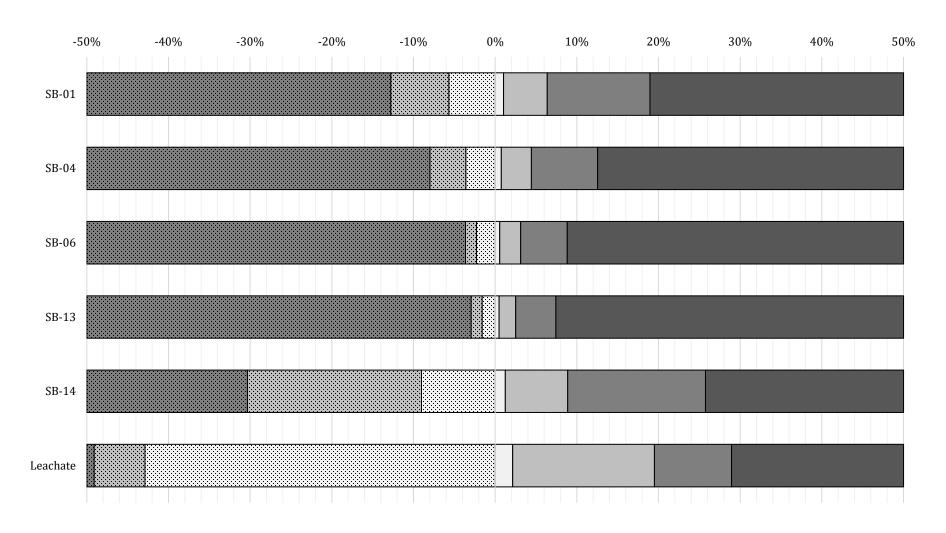


Figure 4 - Water Quality Signatures Merrimack Station Coal Ash Landfill Bow, New Hampshire

■ Chloride ■ Alkalinity Total (as CaCO3) ■ Sulfate □ Potassium ■ Magnesium ■ Calcium ■ Sodium

Water Quality Signature by Percent (%) of Total Ionic Strength

■ Chloride ■ Alkalinity Total (as CaCO3) ■ Sulfate ■ Potassium ■ Magnesium ■ Calcium ■ Sodium

P:\2000s\2025.07\Work\201807_CCR_nonCCR_Xtab_PJP

ATTACHMENT B

ANALYTICAL LABORATORY REPORTS

April 2018

Eastern Analytical, Inc.

professional laboratory and drilling services

Allan Palmer Eversource Energy 780 North Commercial Street, PO Box 330 Manchester, NH 03105-0330

Subject: Laboratory Report

Eastern Analytical, Inc. ID: 180458 Client Identification: Merrimack Station - Coal Ash Date Received: 4/9/2018

Dear Mr. Palmer:

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.eailabs.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply to all EAI reports:

Solid samples are reported on a dry weight basis, unless otherwise noted

- < : "less than" followed by the reporting limit
- > : "greater than" followed by the reporting limit
- %R:%Recovery,

Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269) and Vermont (VT1012).

The following information is contained within this report: Sample Conditions summary, Analytical Results/Data, Quality Control data (if requested) and copies of the Chain of Custody. This report may not be reproduced except in full, without the the written approval of the laboratory.


If you have any questions regarding the results contained within, please feel free to directly contact me or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample(s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

Lorraine Olashaw, Lab Director

<u>4.28.18</u> Date

SAMPLE CONDITIONS PAGE

EAI ID#: 180458

Client: Eversource Energy

Client Designation: Merrimack Station - Coal Ash

-	ture upon receipt (°C): 5. temperature range (°C): 0-6	5.0 Received on ice or cold packs (Yes/No): Υ				
Lab ID	Sample ID	Date Received	Date Sampled	Sample % Dry Matrix Weight	Exceptions/Comments (other than thermal preservation)	
180458.01	SB-1	4/9/18	4/9/18	aqueous	Adheres to Sample Acceptance Policy	
180458.02	SB-4	4/9/18	4/9/18	aqueous	Adheres to Sample Acceptance Policy	
180458.03	SB-6	4/9/18	4/9/18	aqueous	Adheres to Sample Acceptance Policy	
180458.04	SB-13	4/9/18	4/9/18	aqueous	Adheres to Sample Acceptance Policy	
180458.05	SB-14	4/9/18	4/9/18	aqueous	Adheres to Sample Acceptance Policy	

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitability, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.

Immediate analyses, pH, Total Residual Chlorine, Dissolved Oxygen and Sulfite, performed at the laboratory were run outside of the recommended 15 minute hold time.

All results contained in this report relate only to the above listed samples.

References include:

1) EPA 600/4-79-020, 1983

2) Standard Methods for Examination of Water and Wastewater, 20th Edition, 1998 and 22nd Edition, 2012

3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB

4) Hach Water Analysis Handbook, 2nd edition, 1992

Eastern Analytical, Inc.

www.easternanalytical.com | 800.287.0525 | customerservice@easternanalytical.com

EAI ID#: 180458

Client: Eversource Energy

Sample ID:	\$B-1	SB-4	SB-6	SB-13					
Lab Sample ID:	180458.01	180458.02	180458.03	180458.04					
Matrix:	aqueous	aqueous	aqueous	aqueous					
Date Sampled:	4/9/18	4/9/18	4/9/18	4/9/18		A	nalysis		
Date Received:	4/9/18	4/9/18	4/9/18	4/9/18	Units	Date		e Method A	nalyst
Solids Dissolved	160	220	240	330	mg/L	04/09/18	16:45	2540C-97	ΑΤΑ
Fluoride	< 0.1	< 0.1	< 0.1	< 0.1	mg/L	04/12/18	20:50	300.0	KD
Sulfate	10	12	9.5	8	mg/L	04/12/18	20:50	300.0	KD
Chloride	55	93	120	170	mg/L	04/10/18	9:02	4500CIE-97	KD

Sample ID:	SB-14
Lab Sample ID:	180458.05
Matrix:	aqueous
Date Sampled:	4/9/18
Date Received:	4/9/18
Solids Dissolved	80
Fluoride	< 0.1
Sulfate	8.4
Chloride	14

Analysis								
Units	Date	Time	Method A	nalyst				
mg/L	04/09/18	16:45	2540C-97	ATA				
mg/L	04/12/18	21:44	300.0	KD				
mg/L	04/12/18	21:44	300.0	KD				
mg/L	04/10/18	9:10	4500CIE-97	KD				

EAI ID#: 180458

Client: Eversource Energy

Sample ID:	SB-1	SB-4	SB-6	SB-13					
Lab Sample ID: Matrix: Date Sampled: Date Received:	180458.01 aqueous 4/9/18 4/9/18	180458.02 aqueous 4/9/18 4/9/18	180458.03 aqueous 4/9/18 4/9/18	180458.04 aqueous 4/9/18 4/9/18	Analytical Matrix	Units	Date of Analysis	Method	Analyst
Boron Calcium	0.067 12	< 0.05 11	< 0.05 7.9	< 0.05 11	AqTot AqTot	mg/L mg/L	4/10/18 4/10/18	200.7 200.7	RJ RJ

Sample ID:	SB-14
Lab Sample ID:	180458.05
Matrix:	aqueous
Date Sampled:	4/9/18
Date Received:	4/9/18
Boron Calcium	< 0.05 4.2

Analytical Matrix	Units	Date of Analysis	Method A	nalyst
AqTot	mg/L	4/10/18	200.7	RJ
AqTot	mg/L	4/10/18	200.7	RJ

\mathcal{M}

EAI ID#: 180458

4

Client: Eversource Energy

nple ID:	SB-1	SB-13
Sample ID:	180458.01	180458.04
ix:	aqueous	aqueous
ate Sampled:	4/9/18	4/9/18
ate Received:	4/9/18	4/9/18
Field pH	5.90	5.81

Sample ID:	SB-4	SB-6	SB-14	
Lab Sample ID:	180458.02	180458.03	180458.05	
Matrix:	aqueous	aqueous	aqueous	
Date Sampled:	4/9/18	4/9/18	4/9/18	Date of
Date Received:	4/9/18	4/9/18	4/9/18	Units Analysis Method Analyst
Field pH	5.87	5.57	5.76	SU 4/9/18 SM4500H JL

CHAIN-OF-CUSTODY RECORD

eastern analytical

professional laboratory services

180458

	aSampleID	Date/Time	aMatrix	Parameters	Sample Notes	# of containers
SB	-1	04/09/18 12:01	GW	Total Boron, Calcium, Flouride, Chloride, Sulfate, Field pH, Total Dissolved Solids		3
preser	vative: HCL HN	O_3 H ₂ SO ₄ NaOH MEOH	I Na ₂ S ₂ O ₃ CE			
SB		04/09/18 10:09		Total Boron, Calcium, Flouride, Chloride, Sulfate, Field pH, Total Dissolved Solids		3
preser	ative: HCL	Ø ₃ H₂SO₄ NaOH MEOH	$I Na_2S_2O_3$ (CE)			
SB	-6	04/09/18 12:08	GW	Total Boron, Calcium, Flouride, Chloride, Sulfate, Field pH, Total Dissolved Solids		3
preser	vative: HCL) O₃ H₂SO₄ NaOH MEOH	I Na2S2O3			
SB	-13	04/09/2018	GW	Total Boron, Calcium, Flouride, Chloride, Sulfate, Field pH, Total Dissolved Solids	••••••••••••••••••••••••••••••••••••••	3
preser	ative: HCL AN	\mathbf{O}_{4} H ₂ SO ₄ NaOH MEOH	Na ₂ S ₂ O ₃			
SB		94/09/2018 13:35		Total Boron, Calcium, Flouride, Chloride, Sulfate, Field pH, Total Dissolved Solids		3
preser	vative: HCL AN	0, H₂SO₄ NaOH MEOH	Na2S2O3			

aClientID nProjectID	Merrimack Station - Coal Ash3949nYearMonth 2018.04	Results Needed by: Preferred date Notes about project	ReportingOptions ☑ HC □ NO FAX □ EDD Disk □ Fax □ No partial FAX ☑ EDD email	PO#
Client (Pro Mgr)	Allan Palmer			(50)-
Customer	Eversource Energy		Samples Collected by: JL, JG (CA)	Temperature 5.00C
Address	780 North Commercial Street, PO			- etd
City	Manchester NH 03105-033		Relinguished by Date/Time	Received by
Phone	669-4000		Bate/ Time	Received by
Fax	Choose one:		Relinquished by Date/Time	Received by

Eastern Analytical, Inc. 25 Chenell Dr. Concord, NH 03301

Phone: (603)228-0525 1-800-287-0525

July 2018

Eastern Analytical, Inc.

professional laboratory and drilling services

Allan Palmer Granite Shore Power 431 River Road Bow , NH 03304

Subject: Laboratory Report

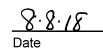
Eastern Analytical, Inc. ID: 184694 Client Identification: Merrimack Station CA LF - CCR Rule Date Received: 7/25/2018

Dear Mr. Palmer:

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.easternanalytical.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply to all EAI reports:

- Solid samples are reported on a dry weight basis, unless otherwise noted
- < : "less than" followed by the reporting limit
- > : "greater than" followed by the reporting limit
- %R:%Recovery


Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269), Vermont (VT1012) and New York (12072).

The following information is contained within this report: Sample Conditions summary, Analytical Results/Data, Quality Control data (if requested) and copies of the Chain of Custody. This report may not be reproduced except in full, without the the written approval of the laboratory.

If you have any questions regarding the results contained within, please feel free to directly contact me or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample (s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

SAMPLE CONDITIONS PAGE

EAI ID#: 184694

Client: Granite Shore Power

Client Designation: Merrimack Station CA LF - CCR Rule

-	ture upon receipt (°C): 3. temperature range (°C): 0-6					
Lab ID	Sample ID	Date Received	Date Sampled	Sample % Dry Matrix Weight	Exceptions/Comments (other than thermal preservation)	
184694.01	SB-1	7/25/18	7/25/18	aqueous	Adheres to Sample Acceptance Policy	
184694.02	SB-4	7/25/18	7/25/18	aqueous	Adheres to Sample Acceptance Policy	
184694.03	SB-6	7/25/18	7/25/18	aqueous	Adheres to Sample Acceptance Policy	
184694.04	SB-13	7/25/18	7/25/18	aqueous	Adheres to Sample Acceptance Policy	
184694.05	SB-14	7/25/18	7/25/18	aqueous	Adheres to Sample Acceptance Policy	

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitability, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.

Immediate analyses, pH, Total Residual Chlorine, Dissolved Oxygen and Sulfite, performed at the laboratory were run outside of the recommended 15 minute hold time.

All results contained in this report relate only to the above listed samples.

References include:

1) EPA 600/4-79-020, 1983

2) Standard Methods for Examination of Water and Wastewater, 20th Edition, 1998 and 22nd Edition, 2012

3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB

4) Hach Water Analysis Handbook, 2nd edition, 1992

Eastern Analytical, Inc.

www.easternanalytical.com | 800.287.0525 | customerservice@easternanalytical.com

EAI ID#: 184694

Client: Granite Shore Power

Client Designation: Merrimack Station CA LF - CCR Rule

Sample ID:	SB-1	SB-4	SB-6	SB-13				-	
Lab Sample ID:	184694.01	184694.02	184694.03	184694.04					
Matrix:	aqueous	aqueous	aqueous	aqueous					
Date Sampled:	7/25/18	7/25/18	7/25/18	7/25/18		A	nalysis		
Date Received:	7/25/18	7/25/18	7/25/18	7/25/18	Units	Date		Method A	Analyst
Solids Dissolved	140	210	310	340	mg/L	07/26/18	11:10	2540C-11	ATA
Sulfate	13	11	12	8.7	mg/L	08/01/18	11:13	300.0	KD
Chloride	63	95	180	190	mg/L	08/01/18	11:13	300.0	KD

Sample ID:	SB-14
Lab Sample ID:	184694.05
Matrix:	aqueous
Date Sampled:	7/25/18
Date Received:	7/25/18
Solids Dissolved	56
Sulfate	6.1
Chloride	9.8

Analysis									
Units	Date	Time	Method A	nalyst					
mg/L mg/L	07/26/18 08/01/18	11:10 12:13	2540C-11 300.0	ATA KD					
mg/L	08/01/18	12:13	300.0	KD					

2

EAI ID#: 184694

Client: Granite Shore Power

Client Designation: Merrimack Station CA LF - CCR Rule

Sample ID:	SB-1	SB-4	SB-6	SB-13					
Lab Sample ID:	184694.01	184694.02	184694.03	184694.04					
Matrix:	aqueous	aqueous	aqueous	aqueous					
Date Sampled:	7/25/18	7/25/18	7/25/18	7/25/18	Analytical		Date of		
Date Received:	7/25/18	7/25/18	7/25/18	7/25/18	Matrix	Units	Analysis	Method	Analyst
Calcium	12	9.8	11	10	AqTot	mg/L	7/26/18	200.7	RJ

Sample ID:	SB-14
Lab Sample ID:	184694.05
Matrix:	aqueous
Date Sampled:	7/25/18
Date Received:	7/25/18
Calcium	5.1

Analytical Matrix	Units	Date of Analysis	Method	Analyst
AqTot	mg/L	7/26/18	200.7	RJ

\mathcal{M}

LABORATORY REPORT

EAI ID#: 184694

Client: Granite Shore Power

Client Designation: Merrimack Station CA LF - CCR Rule

Sample ID:	SB-1	SB-13		
Lab Sample ID:	184694.01	184694.04		
Matrix:	aqueous	aqueous		
Date Sampled:	7/25/18	7/25/18		Date of
			Units	Analysis Method Analyst
Temperature	16	16	C°	7/25/18 SM2550B JG
Field pH	5.94	5.69	SU	7/25/18 SM4500H JG
Field Conductivity	270	600	uS/cm	7/25/18 SM2510B JG
Field Turbidity	2.8	1.9	NTU	7/25/18 Field JG

Sample ID:	SB-4	SB-6	SB-14				
Lab Sample ID:	184694.02	184694.03	184694.05				
Matrix:	aqueous	aqueous	aqueous				
Date Sampled:	7/25/18	7/25/18	7/25/18		Date of		
				Units	Analysis	Method /	Analyst
Temperature	17	16	12	°C	7/25/18	SM2550B	JL
Field pH	5.68	5.44	5.61	SU	7/25/18	SM4500H	I JL
Field Conductivity	360	580	86	uS/cm	7/25/18	SM2510B	JL
Field Turbidity	1.1	1.0	3.6	NTU	7/25/18	Field	JL

CHAIN-OF-CUSTODY RECORD

184694

	I OF Z			വ
	ر Date/Time Composites need start			
Sample IDs	and stop dates/times	natrix	Parameters and Sample Notes	# of containers
SB-1	7/25/18	aqueous	AqTot/ICPMets.Ca/Cl/SO4/TDS/FieldTemp/FieldCond/FieldpH/FieldTurb	3
	1304	Grab or Comp		
Sampler confir	ms ID and parameters	s are accurate	Circle preservative/s: HCL (N), H,SO, NaOH MEOH Na,S,O,	Dissolved Sample Field Filtered
SB-4	7(25/18	aqueous	AqTot/ICPMets.Ca/Cl/SO4/TDS/FieldTemp/FieldCond/FieldpH/FieldTurb	3
	11:30	Grab or Comp		
Sampler confir	ا ms ID and parameters ا	l s are accurate	Circle preservative/s: HCL (IND, H,SO, NaOH MEOH Na,S,O, ICE)	Dissolved Sample Field Filtered
SB-6	7(25/18	aqueous	AqTot/ICPMets.Ca/CI/SO4/TDS/FieldTemp/FieldCond/FieldpH/FieldTurb	3
	13:44	Grab or Comp		
Sampler confir	ms ID and parameter	s are accurate	Circle preservative/s: HCL (HNO, H,SO, NaOH MEOH Na,S,O, (ICE)	Dissolved Sample Field Filtered
SB-13	7/25/18	aqueous	AqTot/ICPMets.Ca/Cl/SO4/TDS/FieldTemp/FieldCond/FieldpH/FieldTurb	3
	15:10	Grab or Comp		
Sampler confir	ms ID and parameter	s are accurate	Circle preservative/s: HCL AND, H,SO, NaOH MEOH Na,S,O, (CB)	Dissolved Sample Field Filtered

Please ensure this auto COC is accurate, adheres to permit or sampling requirements for this sampling event, and modify as necessary.

EAI Project ID 3949	Results Needed by: Preferred date	ReportingOptions		
Project Name Merrimack Station CA LF - CCR Rule	Notes:	🛛 нс	🗆 NO FAX	PO#
State NH		EDD PDF	Partial FAX	Quote#:
Client (Pro Mgr) Allan Palmer		🛛 PDF prelim, NO FAX	EQUIS	Temp <u>35</u> °C
Customer Granite Shore Power		e-mail Login Confirmation	l .	
Address 431 River Road		Samples Collected by: Jo	S, SYEAI	
City Bow NH 03304		Tela Ti	25/18-1645	_ MILLE
Phone 224-4081 Fax 224-4081	QC deliverables	Relinquished by	Date/Time	Received by
Email: allan.palmer@graniteshorepower.com Direct (603) 230-7951		Relinquished by	Date/Time	Received by

CHAIN-OF-CUSTODY RECORD

	2 ° F Z Date/Time Composites need start	<i>0</i>		r əivilik
Sample IDs	Composites need start and stop dates/times	Matrix	Parameters and Sample Notes	# of containers
SB-14	7/25/18	aqueous	AqTot/ICPMets.Ca/Cl/SO4/TDS/FieldTemp/FieldCond/FieldpH/FieldTurb	3
	1502	Grab or Comp		
Sampler cor	ہ nfirms ID and parameter	ı s are accurate	Circle preservative/s: HCL (NO ₃ H ₂ SO ₄ NaOH MEOH Na ₂ S ₂ O ₃ (CE)	Dissolved Sample Field Filtered

Please ensure this auto COC is accurate, adheres to permit or sampling requirements for this sampling event, and modify as necessary.

EAI Project ID 3949	Results Needed by: Preferred date	ReportingOptions		
Project Name Merrimack Station CA LF - CCR Rule	Notes:	И нс	🗌 NO FAX	PO#
State NH		EDD PDF	☐ Partial FAX ☐ PDF Invoice	Quote#:
Client (Pro Mgr) Allan Palmer		PDF prelim, NO FAX	🗌 EQUIS	_{тетр} <u>3</u> 5°С
Customer Granite Shore Power		e-mail Login Confirmation		ice YÆÎN⊡
Address 431 River Road		Samples Collected by:	SJL/BAI	
City Bow NH 03304		Jel 7/2	5/15 1645	Allan
Phone 224-4081 Fax 224-4081	QC deliverables	Relinquished by	Date/Time	Received by
Email: allan.palmer@graniteshorepower.com	🛛 А 🗆 А+ 🗆 В 🗆 В+ 🔲 С 🗆 МА	A MCP Relinquished by	Date/Time	Received by
Direct (603) 230-7951				-

<u>ه</u>

November 2018

Eastern Analytical, Inc.

professional laboratory and drilling services

Allan Palmer Granite Shore Power 431 River Road Bow , NH 03304

Subject: Laboratory Report

Eastern Analytical, Inc. ID: 189622 Client Identification: Merrimack Station - Coal Ash Date Received: 11/29/2018

Dear Mr. Palmer:

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.easternanalytical.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply to all EAI reports:

- Solid samples are reported on a dry weight basis, unless otherwise noted
- < : "less than" followed by the reporting limit
- > : "greater than" followed by the reporting limit
- %R:%Recovery

Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269), Vermont (VT1012) and New York (12072).

The following information is contained within this report: Sample Conditions summary, Analytical Results/Data, Quality Control data (if requested) and copies of the Chain of Custody. This report may not be reproduced except in full, without the the written approval of the laboratory.

If you have any questions regarding the results contained within, please feel free to directly contact me or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample (s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

of pages (excluding cover letter)

\mathcal{M}

SAMPLE CONDITIONS PAGE

EAI ID#: 189622

Client: Granite Shore Power

Client Designation: Merrimack Station - Coal Ash

Temperat Acceptable	Received on ice or cold packs (Yes/No): Y					
Lab ID	Sample ID	Date Received	Date Sampled	Sample 9 Matrix		Exceptions/Comments (other than thermal preservation)
189622.01	SB-1	11/29/18	11/29/18	aqueous		Adheres to Sample Acceptance Policy
189622.02	SB-4	11/29/18	11/28/18	aqueous		Adheres to Sample Acceptance Policy
189622.03	SB-6	11/29/18	11/28/18	aqueous		Adheres to Sample Acceptance Policy
189622.04	SB-13	11/29/18	11/28/18	aqueous		Adheres to Sample Acceptance Policy
189622.05	SB-14	11/29/18	11/28/18	aqueous		Adheres to Sample Acceptance Policy

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitability, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.

Immediate analyses, pH, Total Residual Chlorine, Dissolved Oxygen and Sulfite, performed at the laboratory were run outside of the recommended 15 minute hold time.

All results contained in this report relate only to the above listed samples.

References include:

1) EPA 600/4-79-020, 1983

2) Standard Methods for Examination of Water and Wastewater, 20th, 21st, 22nd & 23rd Edition or noted Revision year.

3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB

4) Hach Water Analysis Handbook, 4th edition, 1992

Eastern Analytical, Inc.

www.easternanalytical.com | 800.287.0525 | customerservice@easternanalytical.com

EAI ID#: 189622

Client: Granite Shore Power

Client Designation: Merrimack Station - Coal Ash

Sample ID:	SB-1	SB-4	SB-6	SB-13					
Lab Sample ID:	189622.01	189622.02	189622.03	189622.04					
Matrix:	aqueous	aqueous	aqueous	aqueous					
Date Sampled:	11/29/18	11/28/18	11/28/18	11/28/18		۵	nalysis		
Date Received:	11/29/18	11/29/18	11/29/18	11/29/18	Units	Date Time Method Analys			Analyst
Solids Dissolved	100	83	140	260	mg/L	12/03/18	14:45	2540C-11	SR
Fluoride	< 0.1	< 0.1	< 0.1	< 0.1	mg/L	12/06/18	2:26	300.0	KD
Sulfate	10	13	11	7.2	mg/L	12/06/18	2:26	300.0	KD
Chloride	66	86	150	200	mg/L	12/06/18	2:26	300.0	KD
Alkalinity Total (CaCO3)	14	17	9.4	7.2	mg/L	12/03/18	11:44	2320B-11	ATA

Sample ID:	SB-14			
Lab Sample ID:	189622.05			
Matrix:	aqueous			
Date Sampled:	11/28/18	Analysis		
Date Received:	11/29/18	Units Date Time Method	hod Analyst	
Solids Dissolved	< 5	mg/L 12/03/18 14:45 2540C-1	1 SF	
Fluoride	< 0.1	mg/L 12/06/18 3:31 300.0	KD	
Sulfate	6.3	mg/L 12/06/18 3:31 300.0	KD	
Chloride	7.8	mg/L 12/06/18 3:31 300.0	KD	

SB-14: Solids Dissolved were below the total concentration of the anions analyzed. Both Sulfate and Chloride are near the Solid Dissolved reporting limit.

EAI ID#: 189622

Client: Granite Shore Power

Sample ID:	SB-1	SB-4	SB-6	SB-13					
Lab Sample ID:	189622.01	189622.02	189622.03	189622.04					
Matrix:	aqueous	aqueous	aqueous	aqueous					
Date Sampled:	11/29/18	11/28/18	11/28/18	11/28/18	Analytical		Date of		
Date Received:	11/29/18	11/29/18	11/29/18	11/29/18	Matrix	Units	Analysis	Method	Analyst
Boron	0.087	< 0.05	< 0.05	< 0.05	AqTot	mg/L	12/3/18	200.8	DS
Calcium	13	12	11	13	AqTot	mg/L	12/3/18	200.8	DS
Magnesium	3.0	2.8	2.5	2.8	AqTot	mg/L	12/3/18	200.8	DS
Potassium	1.7	2.0	1.8	2.1	AqTot	mg/L	12/3/18	200.8	DS
Sodium	37	63	86	110	AqTot	mg/L	12/3/18	200.8	DS

Sample ID:	SB-14
Lab Sample ID:	189622.05
Matrix:	aqueous
Date Sampled:	11/28/18
Date Received:	11/29/18
Boron	< 0.05
Calcium	4.5
Magnesium	1.1
Potassium	0.77
Sodium	8.9

Analytical Matrix	Units	Date of Analysis	Method	Analyst
AqTot	mg/L	12/3/18	200.8	DS
AqTot	mg/L	12/3/18	200.8	DS
AqTot	mg/L	12/3/18	200.8	DS
AqTot	mg/L	12/3/18	200.8	DS
AqTot	mg/L	12/3/18	200.8	DS

EAI ID#: 189622

Client: Granite Shore Power

Sample ID:	SB-1	SB-4	SB-6	SB-13	
Lab Sample ID:	189622.01	189622.02	189622.03	189622.04	
Matrix:	aqueous	aqueous	aqueous	aqueous	
Date Sampled:	11/29/18	1,1/28/18	11/28/18	11/28/18	Date of Units Analysis Method Analyst
Field pH	6.07	6.28	5.86	5.77	SU 11/29/18 SM4500H JG

Sample ID:	SB-14	
Lab Sample ID:	189622.05	
Matrix:	aqueous	
Date Sampled:	11/28/18	Date of
		Units Analysis Method Analyst
Field pH	5.96	SU 11/28/18 SM4500H JG

Plot

ഹ

CHAIN-OF-CUSTODY RECORD

eastern analytical

professional laboratory services

189622

aSampleID	Date/Time	aMatrix	Parameters	Sample Notes	# of containers
SB-1	11/29/18 0757	GW	Total Boron, Calcium, Magnesium, Potassium, Sodium, Flouride, Chloride, Sulfate, Field pH, Total Dissolved Solids, Total Alkalinity		4
preservative: HCL	$O_{2}H_{2}SO_{4}$ NaOH MEOH	1 Na ₂ S ₂ O ₃ (CE			
SB-4	11)35/18 10:59	GW	Total Boron, Calcium, Magnesium, Potassium, Sodium, Flouride, Chloride, Sulfate, Field pH, Total Dissolved Solids, Total Alkalinity		4
preservative: HCL	b_3 H_2SO_4 NaOH MEOH	I Na ₂ S ₂ O ₃			
SB-6	11/28/18	GW	Total Boron, Calcium, Magnesium, Potassium, Sodium, Flouride, Chloride, Sulfate, Field pH, Total Dissolved Solids, Total Alkalinity		4
preservative: HCL	0_3 H ₂ SO ₄ NaOH MEOH	I Na₂S₂O₃ (CE			L
SB-13	11/28/18 14:24	GW	Total Boron, Calcium, Magnesium, Potassium, Sodium, Flouride, Chloride, Sulfate, Field pH, Total Dissolved Solids, Total Alkalinity		4
preservative: HCL	\overline{D}_3 H ₂ SO ₄ NaOH MEOH	I Na₂S₂O₃ (ĈĒ			
SB-14	11/28/18 15:48	GW	Total Boron, Calcium, Magnesium, Potassium, Sodium, Flouride, Chloride, Sulfate, Field pH, Total Dissolved Solids, Total Alkalinity		4
preservative: HCL	B_3 H ₂ SO ₄ NaOH MEOH	$1 \operatorname{Na}_2 \operatorname{S}_2 \operatorname{O}_3 \operatorname{O}_3$			

aClientID	Merrimack Station - Coal Ash	Results Needed by: Preferred date	ReportingOptions ☐ HC ☐ NO FAX ☐ EDD Disk	PO#
nProjectID	3949 nYearMonth 2018.11	Notes about project	Fax No partial FAX EDD emai	Quote#
Client (Pro Mgr)	Allan Palmer		Ice: Y⊠ N□	
Customer	Granite Shore Power		Samples Collected by: <u>J.Gagnu /EA/</u>	Temperature ^{3,30} C
Address	431 River Road		1 11 11	A
City	Bow NH 03304		Relinguished by Date/Time	Received by
Phone	224-4081		Date/ Inde	Keceived by
Fax	224-4081	-	Relinquished by Date/Time	Received by

Eastern Analytical, Inc. 25 Chenell Dr. Concord, NH 03301

Phone: (603)228-0525 1-800-287-0525